Wiener-type tests from a two-sided Gaussian bound

被引:0
|
作者
Ermanno Lanconelli
Giulio Tralli
Francesco Uguzzoni
机构
[1] Università degli Studi di Bologna,Dipartimento di Matematica
关键词
Gaussian bounds; Potential analysis; Boundary behavior of PW solutions; Non-divergence Hörmander operators; Wiener criterion; 35H10; 35K65; 31E05; 35H20; 31C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with hypoelliptic diffusion operators H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}. Our main aim is to show, with an axiomatic approach, that a Wiener-type test of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-regularity of boundary points can be derived starting from the following basic assumptions: Gaussian bounds of the fundamental solution of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} with respect to a distance satisfying doubling condition and segment property. As a main step toward this result, we establish some estimates at the boundary of the continuity modulus for the generalized Perron–Wiener solution to the relevant Dirichlet problem. The estimates involve Wiener-type series, with the capacities modeled on the Gaussian bounds. We finally prove boundary Hölder estimates of the solution under a suitable exterior cone condition.
引用
收藏
页码:217 / 244
页数:27
相关论文
共 50 条