Removal performance and mechanisms of aqueous Cr (VI) by biochar derived from waste hazelnut shell

被引:0
|
作者
Yuting Zhang
Yuwei Tang
Ruiping Yan
Jinchunzi Li
Chenyang Li
Shuang Liang
机构
[1] Jilin Jianzhu University,Key Laboratory of Songliao Aquatic Environment, Ministry of Education
[2] Wuzhou University,School of Food and Pharmaceutical Engineering (Liubao Tea Modern Industry College)
关键词
Hexavalent chromium; Hazelnut shell; Biochar; X-ray photoelectron spectroscopy; Removal mechanisms;
D O I
暂无
中图分类号
学科分类号
摘要
Cr (VI) is still of great concern due to its high toxicity, solubility, and mobility. The transformation of waste biomass to biochar is favorable for sustainable development. Hazelnut shell, an agriculture waste, was utilized as precursor to prepare biochar at 700 °C and firstly conducted for Cr (VI) removal. Nearly all 50 mg L−1 of Cr (VI) was removed from aqueous media in 180 min under the optimal conditions. The best compliance with pseudo-second-order kinetic model (R2 = 0.999) and Langmuir isotherm model (R2 = 0.999) indicated Cr (VI) removal was a monolayer chemisorption process. The hazelnut shell biochar exhibited superior performance on Cr (VI) removal at low pH (2.0) and Cr (VI) concentrations (≤ 50 mg L−1). Various techniques illustrated that the predominant mechanism of Cr (VI) removal by hazelnut shell biochar involved electrostatic attraction, reduction, and complexation. This study provides a promising low-cost alternative for Cr (VI) elimination from acidic wastewater and groundwater after extraction following by pH adjustment to 2.0.
引用
收藏
页码:97310 / 97318
页数:8
相关论文
共 50 条
  • [31] Facile Preparation of a Porous Biochar Derived from Waste Crab Shell with High Removal Performance for Diesel
    Han, Xiao
    Wu, Zhaodi
    Yang, Yi
    Guo, Jian
    Wang, Yaning
    Cai, Lu
    Song, Wendong
    Ji, Lili
    JOURNAL OF RENEWABLE MATERIALS, 2021, 9 (08) : 1377 - 1391
  • [32] Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell
    Hoang, Le Phuong
    Nguyen, Thi Minh Phuong
    Van, Huu Tap
    Hoang, Thi Kim Dung
    Vu, Xuan Hoa
    Nguyen, Tien Vinh
    Ca, N. X.
    WATER AIR AND SOIL POLLUTION, 2020, 231 (01):
  • [33] Evaluation of modified peanut shell in the removal of Cr(VI) from aqueous solution
    Li, Qian
    Huan, Qing
    Ruan, Yifan
    DESALINATION AND WATER TREATMENT, 2022, 272 : 75 - 87
  • [34] Removal of Cr (VI) from Aqueous Solutions Using Peanut shell as Adsorbent
    Ilyas, Mohammad
    Ahmad, Aziz
    Saeed, Muhammad
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2013, 35 (03): : 760 - 768
  • [35] Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell
    Le Phuong Hoang
    Thi Minh Phuong Nguyen
    Huu Tap Van
    Thi Kim Dung Hoang
    Xuan Hoa Vu
    Tien Vinh Nguyen
    N. X. Ca
    Water, Air, & Soil Pollution, 2020, 231
  • [36] Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms
    Zou, Haowen
    Zhao, Jiawei
    He, Feng
    Zhong, Zhong
    Huang, Jinsheng
    Zheng, Yulin
    Zhang, Yue
    Yang, Yicheng
    Yu, Fang
    Bashir, M. Asaad
    Gao, Bin
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 413
  • [37] Effective removal of Cr(vi) from aqueous solution by biochar supported manganese sulfide
    Zhang, Shiqiu
    Zhang, Haiqing
    Liu, Fang
    Yang, Fan
    Zhou, Shengnan
    Zheng, Kui
    Chu, Chunli
    Liu, Le
    Ju, Meiting
    RSC ADVANCES, 2019, 9 (54) : 31333 - 31342
  • [38] Removal of Cr(VI) from aqueous solutions using montmorillonite-biochar composites
    Cao, Xiwei
    Zhou, Xin
    Hao, Mengya
    Mei, Xue
    DESALINATION AND WATER TREATMENT, 2021, 215 : 98 - 107
  • [39] Preparation of Ce/ferroferric oxide/food waste-derived biochar for aqueous Cr(VI) adsorption
    Tie, Jingxi
    Zhang, Meng
    Shen, Chenliang
    Liu, Haiyuan
    Du, Chunbao
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2023, 98 (01) : 168 - 178
  • [40] Removal of the pesticide imidacloprid from aqueous solution by biochar derived from peanut shell
    Zhao R.
    Ma X.
    Xu J.
    Zhang Q.
    BioResources, 2019, 13 (03): : 5656 - 5669