Profile of Blow-up Solution to Hyperbolic System with Nonlocal Term

被引:0
|
作者
Zhi Wen Duan
Kwang Ik Kim
机构
[1] Huazhong University of Science and Technology,Department of Mathematics
[2] Pohang University of Science and Technology,Department of Mathematics
关键词
hyperbolic system; nonlocal term; blow-up profile; 35L05; 35L55; 35L70;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a nonlocal hyperbolic system as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}l} {{\left| {u_{{tt}} = \Delta u + {\left( {{\int_\Omega {vdx} }} \right)}^{p} \;{\text{for}}\;x \in \mathbb{R}^{N} ,t > 0,} \right.} \hfill} \\ {{v_{{tt}} = \Delta v + {\left( {{\int_\Omega {udx} }} \right)}^{q} \;{\text{for}}\;x \in \mathbb{R}^{N} ,t > 0,} \hfill} \\ {{u{\left( {x,0} \right)} = u_{0} {\left( x \right)},u_{t} {\left( {x,0} \right)} = u_{{01}} {\left( x \right)}\;{\text{for}}\;x \in \mathbb{R}^{N} ,} \hfill} \\ {{v{\left( {x,0} \right)} = v_{0} {\left( x \right)},v_{t} {\left( {x,0} \right)} = v_{{01}} {\left( x \right)}\;{\text{for}}\;x \in \mathbb{R}^{N} ,} \hfill} \\ \end{array} $$\end{document}where 1 ≤ N ≤ 3, p ≥ 1, q ≥ 1 and pq > 1. Here the initial values are compactly supported and Ω ⊂ ℝN is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.
引用
收藏
页码:1083 / 1094
页数:11
相关论文
共 50 条
  • [21] Blow-up for a system of heat equations with nonlocal sources and absorptions
    Chen, YP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) : 361 - 372
  • [22] Blow-up and global existence for a nonlocal degenerate parabolic system
    Deng, WB
    Li, YX
    Xie, CH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) : 199 - 217
  • [23] Blow-up of solutions for a system of nonlocal singular viscoelastic equations
    Zarai, Abderrahmane
    Draifia, Alaeddine
    Boulaaras, Salah
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2231 - 2245
  • [24] BLOW-UP OF SOLUTIONS FOR A LOGARITHMIC QUASILINEAR HYPERBOLIC EQUATION WITH DELAY TERM
    Piskin, Erhan
    Yuksekkaya, Hazal
    JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 12 (01): : 56 - 64
  • [25] The Profile of Blow-Up for a Neumann Problem of Nonlocal Nonlinear Diffusion Equation with Reaction
    Wang, Rong-Nian
    Liu, Zhi-Xue
    Zhou, Yong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 173 - 180
  • [26] The Blow-up Rate of Positive Solution of a Parabolic System
    林支桂
    谢春红
    王明新
    Northeastern Mathematical Journal, 1997, (03) : 372 - 378
  • [27] Profiles of blow-up solution of a weighted diffusion system
    Zeng, Weili
    Liu, Chunxue
    Lu, Xiaobo
    Fei, Shumin
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 8
  • [28] Profiles of blow-up solution of a weighted diffusion system
    Weili Zeng
    Chunxue Liu
    Xiaobo Lu
    Shumin Fei
    Boundary Value Problems, 2014
  • [29] Blow-up estimates of the positive solution of a parabolic system
    Pedersen, M
    Lin, ZG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) : 551 - 563
  • [30] The blow-up of solutions of a nonlocal thermistor problem
    Barabanova, A
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 59 - 63