Power-commuting skew derivations on Lie ideals

被引:0
|
作者
Vincenzo De Filippis
Shuliang Huang
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Chuzhou University,Department of Mathematics
来源
关键词
Skew derivation; Automorphism; Generalized polynomial identities; Lie ideal; 16N20; 16W25; 16N55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a prime ring of characteristic different from 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} a non-central Lie ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, (d,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,\sigma )$$\end{document} a nonzero skew derivation of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a fixed positive integer. If [d(x),x]n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[d(x),x]^{n}=0$$\end{document} for all x∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in L$$\end{document}, then R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} satisfies s4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{4}$$\end{document}.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [41] m-potent commutators of skew derivations on Lie ideals
    Raza, Mohd Arif
    Ali, Shakir
    Alhazmi, Husain
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (06) : 937 - 944
  • [42] Identities related to a pair of generalized skew derivations on Lie ideals
    De Filippis, Vincenzo
    Nisar, Junaid
    Rehman, Nadeem ur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [43] A result on generalized skew derivations on Lie ideals in prime rings
    Ashraf M.
    De Filippis V.
    Khan A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 341 - 354
  • [44] An Engel condition with X-generalized skew derivations on Lie ideals
    de Filippis, Vincenzo
    Wei, Feng
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5433 - 5446
  • [45] Product of commutators with b-generalized skew derivations on Lie ideals
    Dhara, Basudeb
    Kar, Sukhendu
    Ghosh, Sourav
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [46] A result concerning nilpotent values with generalized skew derivations on Lie ideals
    Sharma, R. K.
    Dhara, B.
    De Filippis, V.
    Garg, C.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5330 - 5341
  • [47] ANNIHILATOR CONDITIONS WITH GENERALIZED SKEW DERIVATIONS AND LIE IDEALS OF PRIME RINGS
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Scudo, Giovanni
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 32 : 192 - 216
  • [48] Nilpotent Values Induced by Generalized Skew Derivations Acting on Lie Ideals
    Dhara, B.
    Garg, C.
    SIBERIAN MATHEMATICAL JOURNAL, 2025, 66 (01) : 118 - 128
  • [49] Generalized Derivations with Vanishing Power Values on Lie Ideals
    Dhara, Basudeb
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (01) : 35 - 42
  • [50] On Posner's theorem with b-generalized skew derivations on Lie ideals
    Carini, Luisa
    Scudo, Giovanni
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (03)