On Multiple and Infinite Log-Concavity

被引:0
|
作者
Luis A. Medina
Armin Straub
机构
[1] University of Puerto Rico,Department of Mathematics
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
[3] Max-Planck-Institut für Mathematik,undefined
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
log-concavity; linear recurrences; convolution; 05A20; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
Following Boros-Moll, a sequence (an) is m-log-concave if Lj(an)⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{j}(a_{n})\geqslant0}$$\end{document} for all j =  0, 1, . . . , m. Here, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is the operator defined by L(an)=an2-an-1an+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(a_{n}) = a^{2}_{n}-a_{n-1}a_{n+1}}$$\end{document}. By a criterion of Craven-Csordas and McNamara-Sagan it is known that a sequence is ∞-log-concave if it satisfies the stronger inequality ak2⩾rak-1ak+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^{2}_{k}\geqslant ra_{k-1}a_{k+1}}$$\end{document} for large enough r. On the other hand, a recent result of Brändén shows that ∞-log-concave sequences include sequences whose generating polynomial has only negative real roots. In this paper, we investigate sequences which are fixed by a power of the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} and are therefore ∞-log-concave for a very different reason. Surprisingly, we find that sequences fixed by the non-linear operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{2}}$$\end{document} are, in fact, characterized by a linear 4-term recurrence. In a final conjectural part, we observe that positive sequences appear to become ∞-log-concave if convoluted with themselves a finite number of times.
引用
收藏
页码:125 / 138
页数:13
相关论文
共 50 条