On Darboux transformations for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Jonathan J. C. Nimmo
Halis Yilmaz
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University of Dicle,Department of Mathematics
关键词
Derivative nonlinear Schrödinger equation; Darboux transformation; Quasideterminants; 35C08; 35Q55; 37K10; 37K35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Darboux transformations for the derivative nonlinear Schrödinger equation. A new theorem for Darboux transformations of operators with no derivative term are presented and proved. The solution is expressed in quasideterminant forms. Additionally, the parabolic and soliton solutions of the derivative nonlinear Schrödinger equation are given as explicit examples.
引用
收藏
页码:278 / 293
页数:15
相关论文
共 50 条
  • [41] The vector derivative nonlinear Schrödinger equation on the half-line
    Liu, Huan
    Geng, Xianguo
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2018, 83 (01): : 148 - 173
  • [42] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [43] On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation
    Xuelin Yong
    Guo Wang
    Wei Li
    Yehui Huang
    Jianwei Gao
    Nonlinear Dynamics, 2017, 87 : 75 - 82
  • [44] Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrodinger equation
    Zhou, Zi-Xiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 62 : 480 - 488
  • [45] The Darboux Transformation for a New Fractional Schrödinger Equation Hierarchy
    Zhu, Xiao-ming
    Zhang, Jian-bing
    Chen, Shou-ting
    ADVANCES IN MATHEMATICAL PHYSICS, 2024, 2024
  • [46] Darboux transformation and elementary exact solutions of the Schrödinger equation
    Vladislav G Bagrov
    Boris F Samsonov
    Pramana, 1997, 49 : 563 - 580
  • [47] Integration of the Schrödinger equation by canonical transformations
    Tsaur, Gin-Yih
    Wang, Jyhpyng
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (01): : 121041 - 121047
  • [48] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [49] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [50] Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas
    Lei Wang
    Yi-Tian Gao
    Zhi-Yuan Sun
    Feng-Hua Qi
    De-Xin Meng
    Guo-Dong Lin
    Nonlinear Dynamics, 2012, 67 : 713 - 722