Signless Laplacian spectral characterization of some disjoint union of graphs

被引:0
|
作者
B. R. Rakshith
机构
[1] Vidyavardhaka College of Engineering,Department of Mathematics
关键词
Laplacian spectrum; Signless Laplacian spectrum; Cospectral graphs; Spectral characterization; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The adjacency matrix of a simple and undirected graph G is denoted by A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(G)$$\end{document} and DG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_{G}$$\end{document} is the degree diagonal matrix of G. The Laplacian matrix of G is L(G)=DG-A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(G)={\mathcal {D}}_{G}-{\mathcal {A}}(G)$$\end{document} and the signless Laplacian matrix of G is Q(G)=DG+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}(G)={\mathcal {D}}_{G}+{\mathcal {A}}(G) $$\end{document}. The star graph of order n is denoted by Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}. The double starlike treeGp,n,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,n,q}$$\end{document} is obtained by attaching p pendant vertices to one pendant vertex of the path Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} and q pendant vertices to the other pendant vertex of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}. In this paper, we first investigate the disjoint union of double starlike graphs Gp,2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}_{p,2,q}$$\end{document} and the star graphs Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document} for Laplacian (signless) spectral characterization. Also, the signless Laplacian spectral determination of the disjoint union of odd unicyclic graphs and star graphs is studied. Abdian et al. [AKCE Int. J. Graphs Combin. (2018) https://doi.org/10.1016/j.akcej.2018.06.009] proved that if G is a DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} connected non-bipartite graph with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} vertices, then G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document}. Here we give a counterexample for the claim and also we study the graph G∪rK1∪sK2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cup rK_{1}\cup sK_{2}$$\end{document} for signless Laplacian charcterization when G has at least ((n-2)(n-3)+10)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((n-2)(n-3)+10)/2$$\end{document} edges and s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. It is shown that the graph Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. We also prove that the complement graph of Kn∪K2∪rK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}\cup K_{2}\cup rK_{1}$$\end{document} is DQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {DQS}$$\end{document} for r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>1$$\end{document} and n≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ne 3$$\end{document}.
引用
收藏
页码:233 / 245
页数:12
相关论文
共 50 条
  • [21] ON THE LEAST SIGNLESS LAPLACIAN EIGENVALUE OF SOME GRAPHS
    Yu, Guanglong
    Guo, Shuguang
    Xu, Meiling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 560 - 573
  • [22] On the signless Laplacian spectral characterization of the line graphs of T-shape trees
    Guoping Wang
    Guangquan Guo
    Li Min
    Czechoslovak Mathematical Journal, 2014, 64 : 311 - 325
  • [23] Some graphs determined by their (signless) Laplacian spectra
    Das, K.C. (kinkar@lycos.com), 1600, Elsevier Inc. (449):
  • [24] The distance Laplacian and distance signless Laplacian spectrum of some graphs
    Lu, Pengli
    Liu, Wenzhi
    ARS COMBINATORIA, 2020, 152 : 121 - 128
  • [25] Some graphs determined by their (signless) Laplacian spectra
    Liu, Muhuo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1117 - 1134
  • [26] Some Equalities of the Signless Laplacian Spectrums of Graphs
    Zeng Chun-hua
    2013 INTERNATIONAL CONFERENCE ON ECONOMIC, BUSINESS MANAGEMENT AND EDUCATION INNOVATION (EBMEI 2013), VOL 17, 2013, 17 : 330 - 333
  • [27] Some graphs determined by their (signless) Laplacian spectra
    Muhuo Liu
    Czechoslovak Mathematical Journal, 2012, 62 : 1117 - 1134
  • [28] Some results on signless Laplacian coefficients of graphs
    Mirzakhah, Maryam
    Kiani, Dariush
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2243 - 2251
  • [29] Some graphs determined by their (signless) Laplacian spectra
    Liu, Muhuo
    Shan, Haiying
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 154 - 165
  • [30] Signless Laplacian spectral characterization of line graphs of T-shape trees
    Wang, JianFeng
    Belardo, Francesco
    Zhang, QiangLong
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (11): : 1529 - 1545