Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle

被引:0
|
作者
Jun Moon
Tamer Başar
机构
[1] Ulsan National Institute of Science and Technology (UNIST),School of Electrical and Computer Engineering
[2] University of Illinois at Urbana-Champaign,Coordinated Science Laboratory
来源
关键词
Mean field game theory; Risk-sensitive optimal control; Forward–backward stochastic differential equations; Decentralized control;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider risk-sensitive mean field games via the risk-sensitive maximum principle. The problem is analyzed through two sequential steps: (i) risk-sensitive optimal control for a fixed probability measure, and (ii) the associated fixed-point problem. For step (i), we use the risk-sensitive maximum principle to obtain the optimal solution, which is characterized in terms of the associated forward–backward stochastic differential equation (FBSDE). In step (ii), we solve for the probability law induced by the state process with the optimal control in step (i). In particular, we show the existence of the fixed point of the probability law of the state process determined by step (i) via Schauder’s fixed-point theorem. After analyzing steps (i) and (ii), we prove that the set of N optimal distributed controls obtained from steps (i) and (ii) constitutes an approximate Nash equilibrium or ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Nash equilibrium for the N player risk-sensitive game, where ϵ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \rightarrow 0$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} at the rate of O(1N1/(n+4))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{1}{N^{1/(n+4)}})$$\end{document}. Finally, we discuss extensions to heterogeneous (non-symmetric) risk-sensitive mean field games.
引用
收藏
页码:1100 / 1125
页数:25
相关论文
共 50 条
  • [41] Nash Equilibria of Risk-Sensitive Nonlinear Stochastic Differential Games
    T. Başar
    Journal of Optimization Theory and Applications, 1999, 100 : 479 - 498
  • [42] Risk-sensitive first passage stochastic games with unbounded costs
    Wei, Qingda
    Chen, Xian
    OPTIMIZATION, 2024, 73 (04) : 1161 - 1194
  • [43] Zero-Sum Risk-Sensitive Stochastic Differential Games
    Basu, Arnab
    Ghosh, Mrinal K.
    MATHEMATICS OF OPERATIONS RESEARCH, 2012, 37 (03) : 437 - 449
  • [44] Nash equilibria of risk-sensitive nonlinear stochastic differential games
    Basar, T
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 100 (03) : 479 - 498
  • [45] Partially-Observed Discrete-Time Risk-Sensitive Mean-Field Games
    Saldi, Naci
    Basar, Tamer
    Raginsky, Maxim
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 317 - 322
  • [46] Stochastic maximum principle in the mean-field controls
    Li, Juan
    AUTOMATICA, 2012, 48 (02) : 366 - 373
  • [47] Risk-Sensitive Mean-Field-Type Control
    Bensoussan, Alain
    Djehiche, Boualem
    Tembine, Hamidou
    Yam, Phillip
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [48] Risk-Sensitive Average Equilibria for Discrete-Time Stochastic Games
    Qingda Wei
    Xian Chen
    Dynamic Games and Applications, 2019, 9 : 521 - 549
  • [49] Risk-Sensitive Average Equilibria for Discrete-Time Stochastic Games
    Wei, Qingda
    Chen, Xian
    DYNAMIC GAMES AND APPLICATIONS, 2019, 9 (02) : 521 - 549
  • [50] Zero-Sum Stochastic Differential Games with Risk-Sensitive Cost
    Anup Biswas
    Subhamay Saha
    Applied Mathematics & Optimization, 2020, 81 : 113 - 140