Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle

被引:0
|
作者
Jun Moon
Tamer Başar
机构
[1] Ulsan National Institute of Science and Technology (UNIST),School of Electrical and Computer Engineering
[2] University of Illinois at Urbana-Champaign,Coordinated Science Laboratory
来源
关键词
Mean field game theory; Risk-sensitive optimal control; Forward–backward stochastic differential equations; Decentralized control;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider risk-sensitive mean field games via the risk-sensitive maximum principle. The problem is analyzed through two sequential steps: (i) risk-sensitive optimal control for a fixed probability measure, and (ii) the associated fixed-point problem. For step (i), we use the risk-sensitive maximum principle to obtain the optimal solution, which is characterized in terms of the associated forward–backward stochastic differential equation (FBSDE). In step (ii), we solve for the probability law induced by the state process with the optimal control in step (i). In particular, we show the existence of the fixed point of the probability law of the state process determined by step (i) via Schauder’s fixed-point theorem. After analyzing steps (i) and (ii), we prove that the set of N optimal distributed controls obtained from steps (i) and (ii) constitutes an approximate Nash equilibrium or ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Nash equilibrium for the N player risk-sensitive game, where ϵ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \rightarrow 0$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} at the rate of O(1N1/(n+4))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{1}{N^{1/(n+4)}})$$\end{document}. Finally, we discuss extensions to heterogeneous (non-symmetric) risk-sensitive mean field games.
引用
收藏
页码:1100 / 1125
页数:25
相关论文
共 50 条
  • [1] Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle
    Moon, Jun
    Basar, Tamer
    DYNAMIC GAMES AND APPLICATIONS, 2019, 9 (04) : 1100 - 1125
  • [2] Risk-sensitive mean field stochastic games
    Tembine, Hamidou
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4264 - 4269
  • [3] A Stochastic Maximum Principle for Risk-Sensitive Mean-Field-Type Control
    Djehiche, Boualem
    Tembine, Hamidou
    Tempone, Raul
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3481 - 3486
  • [4] A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control
    Djehiche, Boualem
    Tembine, Hamidou
    Tempone, Raul
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (10) : 2640 - 2649
  • [5] Risk-sensitive mean-field stochastic differential games
    Tembine, Hamidou
    Zhu, Quanyan
    Başar, Tamer
    IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, 44 (1 PART 1): : 3222 - 3227
  • [6] On the singular risk-sensitive stochastic maximum principle
    Chala, Adel
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2846 - 2856
  • [7] Risk-Sensitive Mean-Field Games
    Tembine, Hamidou
    Zhu, Quanyan
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (04) : 835 - 850
  • [8] A RISK-SENSITIVE MAXIMUM PRINCIPLE
    WHITTLE, P
    SYSTEMS & CONTROL LETTERS, 1990, 15 (03) : 183 - 192
  • [9] ON STOCHASTIC MAXIMUM PRINCIPLE FOR RISK-SENSITIVE OF FULLY COUPLED FORWARD-BACKWARD STOCHASTIC CONTROL OF MEAN-FIELD TYPE WITH APPLICATION
    Chala, Adel
    Hafayed, Dahbia
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 817 - 843
  • [10] Linear-Quadratic Risk-Sensitive Mean Field Games
    Moon, Jun
    Basar, Tamer
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2691 - 2696