New Explicit and Approximate Solutions of the Newton-Schrödinger System

被引:0
|
作者
Lazhar Bougoffa
Ammar Khanfer
Smail Bougouffa
机构
[1] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Mathematics, Faculty of Science
[2] Prince Sultan University,Department of Mathematics and Sciences
[3] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Physics, Faculty of Science
关键词
Newton-Schrödinger system; Explicit solution; Existence and uniqueness of the solution; Adomian decomposition method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Newton-Schrödinger system ∇2Ψ=γΦ+a(x)Ψ,∇2Φ=∣Ψ∣2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{rcl} \nabla ^{2} \Psi & =& \left( \gamma \Phi +a(x)\right) \Psi ,\\ \nabla ^{2} \Phi & =& \mid \Psi \mid ^{2}, \end{array} \right. \end{aligned}$$\end{document}which arises in certain quantum transport and chemistry problems. Explicit analytic solutions, which contain an auxiliary parameter, are obtained. An existence and uniqueness theorem to this nonlinear system subject to the boundary conditions is proved. Also, we introduce approximate solutions to the modified Newton-Schrödinger system in the case of spherically-symmetric stationary and time-independence by the Adomian decomposition method.
引用
收藏
页码:795 / 812
页数:17
相关论文
共 50 条
  • [21] Explicit and Exact Solutions to N-Order Schrdinger System via an Extended Mapping Approach
    ZHU Hai-Ping ZHENG Chun-Long FANG Jian-Ping Department of Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (03) : 483 - 486
  • [22] A planar Schrödinger–Newton system with Trudinger–Moser critical growth
    Zhisu Liu
    Vicenţiu D. Rădulescu
    Jianjun Zhang
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [23] EXACT EXPLICIT SOLUTIONS OF THE NONLINEAR SCHRDINGER EQUATION COUPLED TO THE BOUSSINESQ EQUATION
    姚若侠
    李志斌
    ActaMathematicaScientia, 2003, (04) : 453 - 460
  • [24] Conservation Laws for the Schrödinger—Newton Equations
    G. Gubbiotti
    M. C. Nucci
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 292 - 299
  • [25] Exact and Approximate Solutions of Spectral Problems for the Schrödinger Operator on (−∞, ∞) with Polynomial Potential
    V. L. Makarov
    Ukrainian Mathematical Journal, 2018, 70 : 84 - 100
  • [26] Multiple solutions for a quasilinear Schrödinger–Poisson system
    Jing Zhang
    Boundary Value Problems, 2021
  • [27] A new class of exact solutions of the Schrödinger equation
    E. E. Perepelkin
    B. I. Sadovnikov
    N. G. Inozemtseva
    A. A. Tarelkin
    Continuum Mechanics and Thermodynamics, 2019, 31 : 639 - 667
  • [28] New stochastic solutions for a new extension of nonlinear Schrödinger equation
    Alharbi, Yousef F
    Sohaly, M.A.
    Abdelrahman, Mahmoud A E
    Pramana - Journal of Physics, 2021, 95 (04):
  • [29] On the blowing up of solutions for one system of schrödinger equations
    Puriuškis G.
    Lithuanian Mathematical Journal, 2002, 42 (4) : 411 - 418
  • [30] Multiple positive solutions for a quasilinear system of Schrödinger equations
    Giovany M. Figueiredo
    Marcelo F. Furtado
    Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 309 - 334