New Explicit and Approximate Solutions of the Newton-Schrödinger System

被引:0
|
作者
Lazhar Bougoffa
Ammar Khanfer
Smail Bougouffa
机构
[1] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Mathematics, Faculty of Science
[2] Prince Sultan University,Department of Mathematics and Sciences
[3] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Physics, Faculty of Science
关键词
Newton-Schrödinger system; Explicit solution; Existence and uniqueness of the solution; Adomian decomposition method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Newton-Schrödinger system ∇2Ψ=γΦ+a(x)Ψ,∇2Φ=∣Ψ∣2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{rcl} \nabla ^{2} \Psi & =& \left( \gamma \Phi +a(x)\right) \Psi ,\\ \nabla ^{2} \Phi & =& \mid \Psi \mid ^{2}, \end{array} \right. \end{aligned}$$\end{document}which arises in certain quantum transport and chemistry problems. Explicit analytic solutions, which contain an auxiliary parameter, are obtained. An existence and uniqueness theorem to this nonlinear system subject to the boundary conditions is proved. Also, we introduce approximate solutions to the modified Newton-Schrödinger system in the case of spherically-symmetric stationary and time-independence by the Adomian decomposition method.
引用
收藏
页码:795 / 812
页数:17
相关论文
共 50 条
  • [1] Travelling wave solutions and regularity results for nonlinear Newton-Schrödinger systems especially in one dimensions
    Muhammad Sajid Iqbal
    Mustafa Inc
    Samreen Safdar
    Muhammad Akhtar Tarar
    Muhammad Ozair ahmed
    Naveed Shahid
    Optical and Quantum Electronics, 2022, 54
  • [2] New Explicit and Approximate Solutions of the Newton-Schrodinger System
    Bougoffa, Lazhar
    Khanfer, Ammar
    Bougouffa, Smail
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 795 - 812
  • [3] Novel exact traveling wave solutions of Newton-Schrödinger system using Nucci reduction and Sardar sub-equation methods
    Chahlaoui, Younes
    Butt, Asma Rashid
    Abbas, Hafsa
    Bekir, Ahmet
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [4] Explicit approximate controllability of the Schrödinger equation with a polarizability term
    Morgan Morancey
    Mathematics of Control, Signals, and Systems, 2013, 25 : 407 - 432
  • [5] Dichotomous concentrating solutions for a Schrödinger–Newton equation
    Hui-Sheng Ding
    Mengmeng Hu
    Benniao Li
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [6] Approximate Solutions of Perturbed Nonlinear Schr(?)dinger Equations
    CHENG Xue-Ping(1
    Communications in Theoretical Physics, 2007, 48 (08) : 227 - 231
  • [7] Uniqueness of positive solutions with concentration for the Schrödinger–Newton problem
    Peng Luo
    Shuangjie Peng
    Chunhua Wang
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [8] Patterns of Gravitational Cooling in Schrödinger Newton System
    Dongsu Bak
    Seulgi Kim
    Hyunsoo Min
    Jeong-Pil Song
    Journal of the Korean Physical Society, 2019, 74 : 756 - 763
  • [9] Near resonance for a Kirchhoff–Schrödinger–Newton system
    Chun-Yu Lei
    Gao-Sheng Liu
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 363 - 368
  • [10] New vector solutions for the cubic nonlinear schrödinger system
    Duan, Lipeng
    Luo, Xiao
    Zhen, Maoding
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01): : 247 - 291