Hierarchical fusion of visual and physiological signals for emotion recognition

被引:0
|
作者
Yuchun Fang
Ruru Rong
Jun Huang
机构
[1] Shanghai University,School of Computer Engineering and Science
[2] Chinese Academy of Science,Shanghai Advanced Research Institute
关键词
Emotion recognition; Facial expression; Electroencephalogram;
D O I
暂无
中图分类号
学科分类号
摘要
Emotion recognition is an attractive and essential topic in image and signal processing. In this paper, we propose a multi-level fusion method to combine visual information and physiological signals for emotion recognition. For visual information, we propose a serial fusion of two-stage features to enhance the representation of facial expression in a video sequence. We propose to integrate the Neural Aggregation Network with Convolutional Neural Network feature map to reinforce the vital emotional frames. For physiological signals, we propose a parallel fusion scheme to widen the band of the annotation of the electroencephalogram signals. We extract the frequency feature with the Linear-Frequency Cepstral Coefficients and enhance it with the signal complexity denoted by Sample Entropy (SampEn). In the classification stage, we realize both feature level and decision level fusion of both visual and physiological information. Experimental results validate the effectiveness of the proposed multi-level multi-modal feature representation method.
引用
收藏
页码:1103 / 1121
页数:18
相关论文
共 50 条
  • [31] Emotion Recognition from Physiological Signals Using AdaBoost
    Cheng, Bo
    APPLIED INFORMATICS AND COMMUNICATION, PT I, 2011, 224 : 412 - 417
  • [32] Emotion Recognition with Consideration of Facial Expression and Physiological Signals
    Chang, Chuan-Yu
    Tsai, Jeng-Shiun
    Wang, Chi-Jane
    Chung, Pau-Choo
    CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 278 - 283
  • [33] Emotion Recognition from Physiological Signals Using AdaBoost
    Cheng, Bo
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL I, 2010, : 233 - 235
  • [34] Emotion Recognition Based on DEAP Database Physiological Signals
    Stajic, Tamara
    Jovanovic, Jelena
    Jovanovic, Nebojsa
    Jankovic, Milica M.
    2021 29TH TELECOMMUNICATIONS FORUM (TELFOR), 2021,
  • [35] Hierarchical extreme puzzle learning machine-based emotion recognition using multimodal physiological signals
    Pradhan, Anushka
    Srivastava, Subodh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 83
  • [36] Multimodal emotion recognition for the fusion of speech and EEG signals
    Ma J.
    Sun Y.
    Zhang X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (01): : 143 - 150
  • [37] WT Feature Based Emotion Recognition from Multi-channel Physiological Signals with Decision Fusion
    Xie, Jinyan
    Xu, Xiangmin
    Shu, Lin
    2018 FIRST ASIAN CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII ASIA), 2018,
  • [38] Emotion Recognition From Multimodal Physiological Signals via Discriminative Correlation Fusion With a Temporal Alignment Mechanism
    Hou, Kechen
    Zhang, Xiaowei
    Yang, Yikun
    Zhao, Qiqi
    Yuan, Wenjie
    Zhou, Zhongyi
    Zhang, Sipo
    Li, Chen
    Shen, Jian
    Hu, Bin
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (05) : 3079 - 3092
  • [39] Emotion Recognition from Multimodal Physiological Signals for Emotion Aware Healthcare Systems
    Ayata, Deger
    Yaslan, Yusuf
    Kamasak, Mustafa E.
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (02) : 149 - 157
  • [40] Emotion Recognition from Multimodal Physiological Signals for Emotion Aware Healthcare Systems
    Değer Ayata
    Yusuf Yaslan
    Mustafa E. Kamasak
    Journal of Medical and Biological Engineering, 2020, 40 : 149 - 157