Monte Carlo studies of the square Ising model with next-nearest-neighbor interactions

被引:0
|
作者
A. Malakis
P. Kalozoumis
N. Tyraskis
机构
[1] University of Athens,Department of Physics, Section of Solid State Physics
关键词
05.50.+q Lattice theory and statistics (Ising, Potts, etc.); 64.60.Fr Equilibrium properties near critical points, critical exponents; 05.10.Ln Monte Carlo methods ;
D O I
暂无
中图分类号
学科分类号
摘要
We apply a new entropic scheme to study the critical behavior of the square-lattice Ising model with nearest- and next-nearest-neighbor antiferromagnetic interactions. Estimates of the present scheme are compared with those of the Metropolis algorithm. We consider interactions in the range where superantiferromagnetic (SAF) order appears at low temperatures. A recent prediction of a first-order transition along a certain range (0.5–1.2) of the interaction ratio (R=Jnnn/Jnn) is examined by generating accurate data for large lattices at a particular value of the ratio (R=1). Our study does not support a first-order transition and a convincing finite-size scaling analysis of the model is presented, yielding accurate estimates for all critical exponents for R=1. The magnetic exponents are found to obey “weak universality” in accordance with a previous conjecture.
引用
收藏
页码:63 / 67
页数:4
相关论文
共 50 条