Diagonals of injective tensor products of Banach lattices with bases

被引:0
|
作者
Donghai Ji
Byunghoon Lee
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Tuskegee University,Department of Mathematics
[3] University of Mississippi,Department of Mathematics
来源
Positivity | 2017年 / 21卷
关键词
Positive tensor product; Diagonal tensor; Unconditional basis; 46M05; 46B28; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a Banach lattice with a 1-unconditional basis {ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i: i \in \mathbb {N}\}$$\end{document}. Denote by Δ(⊗ˇn,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,\epsilon }E)$$\end{document} (resp. Δ(⊗ˇn,s,ϵE)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,\epsilon }E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by Δ(⊗ˇn,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,|\epsilon |}E)$$\end{document} (resp. Δ(⊗ˇn,s,|ϵ|E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (\check{\otimes }_{n,s,|\epsilon |}E)$$\end{document}) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal {ei⊗⋯⊗ei:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}$$\end{document} is a 1-unconditional basic sequence in both ⊗ˇn,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,\epsilon }E$$\end{document} and ⊗ˇn,s,ϵE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\check{\otimes }_{n,s,\epsilon }E$$\end{document}.
引用
收藏
页码:975 / 988
页数:13
相关论文
共 50 条
  • [31] The Radon-Nikodym property for tensor products of Banach lattices
    Bu, Qingying
    Buskes, Gerard
    POSITIVITY, 2006, 10 (02) : 365 - 390
  • [32] Diagonals in tensor products of operator algebras
    Paulsen, VI
    Smith, RR
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 647 - 652
  • [33] The Boolean transfer principle for injective Banach lattices
    A. G. Kusraev
    Siberian Mathematical Journal, 2015, 56 : 888 - 900
  • [34] The Boolean transfer principle for injective Banach lattices
    Kusraev, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (05) : 888 - 900
  • [35] Geometric characterization of preduals of injective Banach lattices
    Kusraev, A. G.
    Kutatelatze, S. S.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (05): : 863 - 878
  • [36] The radon-nikodym property for tensor products of banach lattices II
    Bu, Qingying
    Buskes, Gerard
    Lai, Wei-Kai
    POSITIVITY, 2008, 12 (01) : 45 - 54
  • [37] ORDER BOUNDED OPERATORS AND TENSOR-PRODUCTS OF BANACH-LATTICES
    HEINRICH, S
    NIELSEN, NJ
    OLSEN, GH
    MATHEMATICA SCANDINAVICA, 1981, 49 (01) : 99 - 127
  • [38] PELCZYNSKI'S PROPERTY (V) ON POSITIVE TENSOR PRODUCTS OF BANACH LATTICES
    Li, Yongjin
    Mate, Apoorva
    Bu, Qingying
    COLLOQUIUM MATHEMATICUM, 2024, 175 (02)
  • [39] The Radon-Nikodym Property for Tensor Products of Banach Lattices II
    Qingying Bu
    Gerard Buskes
    Wei-Kai Lai
    Positivity, 2008, 12 : 45 - 54
  • [40] Boolean-Valued Analysis and Injective Banach Lattices
    Kusraev, A. G.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 341 - 343