Microscopic theory of light-induced ultrafast skyrmion excitation in transition metal films

被引:0
|
作者
Emil Viñas Boström
Angel Rubio
Claudio Verdozzi
机构
[1] Max Planck Institute for the Structure and Dynamics of Matter,Center for Computational Quantum Physics (CCQ)
[2] The Flatiron Institute,Division of Mathematical Physics and ETSF
[3] Lund University,undefined
来源
npj Computational Materials | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic skyrmions are topological excitations of great promise for compact and efficient memory storage. However, to interface skyrmionics with electronic devices requires efficient and reliable ways of creating and destroying such excitations. In this work, we unravel the microscopic mechanism behind ultrafast skyrmion generation by femtosecond laser pulses in transition metal thin films. We employ a theoretical approach based on a two-band electronic model, and show that by exciting the itinerant electronic subsystem with a femtosecond laser ultrafast skyrmion nucleation can occur on a 100 fs timescale. By combining numerical simulations with an analytical treatment of the strong s–d exchange limit, we identify the coupling between electronic currents and the localized d-orbital spins, mediated via Rashba spin–orbit interactions among the itinerant electrons, as the microscopic and central mechanism leading to ultrafast skyrmion generation. Our results show that an explicit treatment of itinerant electron dynamics is crucial to understand optical skyrmion generation.
引用
收藏
相关论文
共 50 条
  • [21] Ultrafast X-ray imaging of the light-induced phase transition in VO2
    Johnson, Allan S.
    Perez-Salinas, Daniel
    Siddiqui, Khalid M.
    Kim, Sungwon
    Choi, Sungwook
    Volckaert, Klara
    Majchrzak, Paulina E.
    Ulstrup, Soren
    Agarwal, Naman
    Hallman, Kent
    Haglund, Richard F.
    Guenther, Christian M.
    Pfau, Bastian
    Eisebitt, Stefan
    Backes, Dirk
    Maccherozzi, Francesco
    Fitzpatrick, Ann
    Dhesi, Sarnjeet S.
    Gargiani, Pierluigi
    Valvidares, Manuel
    Artrith, Nongnuch
    de Groot, Frank
    Choi, Hyeongi
    Jang, Dogeun
    Katoch, Abhishek
    Kwon, Soonnam
    Park, Sang Han
    Kim, Hyunjung
    Wall, Simon E.
    NATURE PHYSICS, 2023, 19 (02) : 215 - +
  • [22] Microscopic theory of ultrafast electron dynamics on metal surfaces
    Sakaue, M
    Munakata, T
    Kasai, H
    Okiji, A
    SURFACE SCIENCE, 2002, 507 : 742 - 747
  • [23] Microscopic theory of ultrafast electron dynamics on metal surfaces
    RIKEN , Wako, Saitama 351-0198, Japan
    不详
    不详
    Surf Sci, 2002, (742-747):
  • [24] Ultrafast Bandgap Technique: Light-induced Semiconductor Augmentation
    Zakharova, I. K.
    Rafailov, M. K.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VI, 2014, 9083
  • [25] Ultrafast light-induced magnetization dynamics of ferromagnetic semiconductors
    Chovan, J
    Kavousanaki, EG
    Perakis, IE
    PHYSICAL REVIEW LETTERS, 2006, 96 (05)
  • [26] LIGHT-INDUCED MOBILITY TRANSITION IN SILICON
    THEODOROU, DE
    QUEISSER, HJ
    PHYSICAL REVIEW LETTERS, 1987, 58 (19) : 1992 - 1995
  • [27] Microscopic Theory of Light-Induced Deformation in Amorphous Side-Chain Azobenzene Polymers
    Toshchevikov, V.
    Saphiannikova, M.
    Heinrich, G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (15): : 5032 - 5045
  • [28] Visible Light-Induced Excited-State Transition-Metal Catalysis
    Kancherla, Rajesh
    Muralirajan, Krishnamoorthy
    Sagadevan, Arunachalam
    Rueping, Magnus
    TRENDS IN CHEMISTRY, 2019, 1 (05): : 510 - 523
  • [29] Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films
    Beebe, Melissa R.
    Klopf, J. Michael
    Wang, Yuhan
    Kittiwatanakul, Salinporn
    Lu, Jiwei
    Wolf, Stuart A.
    Lukaszew, R. Alejandra
    OPTICAL MATERIALS EXPRESS, 2017, 7 (01): : 213 - 223
  • [30] Light-induced Weyl semiconductor-to-metal transition mediated by Peierls instability
    Ning, Honglie
    Mehio, Omar
    Lian, Chao
    Li, Xinwei
    Zoghlin, Eli
    Zhou, Preston
    Cheng, Bryan
    Wilson, Stephen D.
    Wong, Bryan M.
    Hsieh, David
    PHYSICAL REVIEW B, 2022, 106 (20)