Functional calculus, variational methods and Liapunov's theorem

被引:0
|
作者
W. Arendt
S. Bu
M. Haase
机构
[1] Abteilung Angewandte Analysis,
[2] Universität Ulm,undefined
[3] 89069 Ulm,undefined
[4] Germany,undefined
[5] arendt@mathematik.uni-ulm.de,undefined
[6] Department of Mathematical Science,undefined
[7] University of Tsinghua,undefined
[8] 100084 Beijing,undefined
[9] China,undefined
[10] Abteilung Angewandte Analysis,undefined
[11] Universität Ulm,undefined
[12] 89069 Ulm,undefined
[13] Germany,undefined
[14] bu@mathematik.uni-ulm.de,undefined
[15] Abteilung Angewandte Analysis,undefined
[16] Universität Ulm,undefined
[17] 89069 Ulm,undefined
[18] Germany,undefined
[19] haase@mathematik.uni-ulm.de,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Hilbert Space; Closed Form; Variational Method; Functional Calculus; Classical Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Given the generator −A of a holomorphic semigroup on a Hilbert space H, we show that A is associated with a closed form if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A+w\in BIP(H)$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w\in\Bbb{R}$\end{document}. Under this condition we also show that Liapunov's classical theorem is true, in the linear as well as the semilinear case.
引用
收藏
页码:65 / 75
页数:10
相关论文
共 50 条
  • [31] A THEOREM ON AVERAGE LIAPUNOV-FUNCTIONS
    HUTSON, V
    MONATSHEFTE FUR MATHEMATIK, 1984, 98 (04): : 267 - 275
  • [32] ANOTHER PROOF OF LIAPUNOV CONVEXITY THEOREM
    YORKE, JA
    SIAM JOURNAL ON CONTROL, 1971, 9 (03): : 351 - &
  • [33] A variational proof of Thomson's theorem
    Fiolhais, Miguel C. N.
    Essen, Hanno
    Gouveia, Tome M.
    PHYSICS LETTERS A, 2016, 380 (35) : 2703 - 2705
  • [34] Reversible Hamiltonian Liapunov Center theorem
    Buzzi, CA
    Lamb, JSW
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (01): : 51 - 66
  • [35] LIAPUNOV THEOREM FOR MODULAR-FUNCTIONS
    AVALLONE, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1197 - 1204
  • [36] THE HAKE'S THEOREM AND VARIATIONAL MEASURES
    Singh, Surinder Pal
    Rana, Inder K.
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 477 - 488
  • [37] A CONTINUOUS VERSION OF LIAPUNOV CONVEXITY THEOREM
    CELLINA, A
    COLOMBO, G
    FONDA, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1988, 5 (01): : 23 - 36
  • [38] The untyped stack calculus and Bohm's theorem
    Carraro, Alberto
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (113): : 77 - 92
  • [39] Kneser's theorem in q-calculus
    Bohner, M
    Ünal, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6729 - 6739
  • [40] On perturbing Liapunov functional
    Soliman, AA
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 133 (2-3) : 319 - 325