Functional calculus, variational methods and Liapunov's theorem

被引:0
|
作者
W. Arendt
S. Bu
M. Haase
机构
[1] Abteilung Angewandte Analysis,
[2] Universität Ulm,undefined
[3] 89069 Ulm,undefined
[4] Germany,undefined
[5] arendt@mathematik.uni-ulm.de,undefined
[6] Department of Mathematical Science,undefined
[7] University of Tsinghua,undefined
[8] 100084 Beijing,undefined
[9] China,undefined
[10] Abteilung Angewandte Analysis,undefined
[11] Universität Ulm,undefined
[12] 89069 Ulm,undefined
[13] Germany,undefined
[14] bu@mathematik.uni-ulm.de,undefined
[15] Abteilung Angewandte Analysis,undefined
[16] Universität Ulm,undefined
[17] 89069 Ulm,undefined
[18] Germany,undefined
[19] haase@mathematik.uni-ulm.de,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Hilbert Space; Closed Form; Variational Method; Functional Calculus; Classical Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Given the generator −A of a holomorphic semigroup on a Hilbert space H, we show that A is associated with a closed form if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A+w\in BIP(H)$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w\in\Bbb{R}$\end{document}. Under this condition we also show that Liapunov's classical theorem is true, in the linear as well as the semilinear case.
引用
收藏
页码:65 / 75
页数:10
相关论文
共 50 条