A new variant of the Schwarz–Pick–Ahlfors Lemma

被引:2
|
作者
Robert Osserman
机构
[1] Mathematical Sciences Research Institute,
[2] 1000 Centennial Drive,undefined
[3] Berkeley,undefined
[4] CA 94720-5070,undefined
[5] USA.¶e-mail: osserman@msri.org,undefined
来源
manuscripta mathematica | 1999年 / 100卷
关键词
Mathematics Subject Classification (1991):30C80, 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a “general shrinking lemma” that resembles the Schwarz–Pick–Ahlfors Lemma and its many generalizations, but differs in applying to maps of a finite disk into a disk, rather than requiring the domain of the map to be complete. The conclusion is that distances to the origin are all shrunk, and by a limiting procedure we can recover the original Ahlfors Lemma, that all distances are shrunk. The method of proof is also different in that it relates the shrinking of the Schwarz–Pick–Ahlfors-type lemmas to the comparison theorems of Riemannian geometry.
引用
收藏
页码:123 / 129
页数:6
相关论文
共 50 条
  • [21] THE DISCRETE SCHWARZ-PICK LEMMA FOR OVERLAPPING CIRCLES
    VANEEUWEN, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (04) : 1087 - 1091
  • [22] Schwarz–Pick Lemma for Harmonic and Hyperbolic Harmonic Functions
    Adel Khalfallah
    Miodrag Mateljević
    Bojana Purtić
    Results in Mathematics, 2022, 77
  • [23] Schwarz–Pick Lemma for Harmonic and Generalized Harmonic Functions
    Miloš Arsenović
    Jelena Gajić
    Miodrag Mateljević
    Lobachevskii Journal of Mathematics, 2024, 45 (12) : 5975 - 6010
  • [24] The Schwarz-Pick lemma for planar harmonic mappings
    CHEN HuaiHui Department of Mathematics
    Science China(Mathematics), 2011, 54 (06) : 1101 - 1118
  • [25] The Schwarz-Pick lemma for planar harmonic mappings
    HuaiHui Chen
    Science China Mathematics, 2011, 54 : 1101 - 1118
  • [26] The Schwarz-Pick Lemma for Slice Regular Functions
    Bisi, Cinzia
    Stoppato, Caterina
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (01) : 297 - 317
  • [27] A multi-point Schwarz-Pick Lemma
    Beardon, AF
    Minda, D
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1): : 81 - 104
  • [28] A Refinement of Schwarz-Pick Lemma for Higher Derivatives
    Kwon, Ern Gun
    Lee, Jinkee
    Kwon, Gun
    Kim, Mi Hui
    MATHEMATICS, 2019, 7 (01):
  • [29] Complete Nevanlinna-Pick kernels and the Schwarz lemma
    Alpay, Daniel
    Bhattacharyya, Tirthankar
    Jindal, Abhay
    Kumar, Poornendu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,
  • [30] A Schwarz-Pick lemma for the modulus of holomorphic mappings
    Dai, Shaoyu
    Pan, Yifei
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (06) : 864 - 874