Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

被引:0
|
作者
Takao Ohno
Tetsu Shimomura
机构
[1] Oita University,Faculty of Education and Welfare Science
[2] Hiroshima University,Department of Mathematics, Graduate School of Education
来源
关键词
grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev’s inequality; Trudinger’s exponential inequality; continuity; 31B15; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev’s inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger’s inequality and the continuity for Riesz potentials.
引用
收藏
页码:209 / 228
页数:19
相关论文
共 50 条
  • [41] MULTI-MORREY SPACES FOR NON-DOUBLING MEASURES
    He, Suixin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 1039 - 1052
  • [42] EXPONENTIAL INTEGRABILITY FOR LOGARITHMIC POTENTIALS OF FUNCTIONS IN GENERALIZED LEBESGUE SPACES L(log L)q(.) OVER NON-DOUBLING MEASURE SPACES
    Kanemori, Sachihiro
    Ohno, Takao
    Shimomura, Tetsu
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (06): : 1795 - 1803
  • [43] Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces for non-doubling measures
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) : 1788 - 1810
  • [44] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Tao, Xiangxing
    Zheng, Taotao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 287 - 308
  • [45] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Xiangxing Tao
    Taotao Zheng
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 287 - 308
  • [46] Compact embeddings for Sobolev spaces of two variable exponents
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) : 3009 - 3022
  • [47] On embeddings of grand grand Sobolev-Morrey spaces with dominant mixed derivatives
    Najafov, Alik M.
    Babayev, Rovshan F.
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (01) : 1 - 10
  • [48] Campanato-Morrey spaces and variable Riesz potentials
    Ohno, T.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2024, 174 (01) : 62 - 74
  • [49] Weighted Morrey spaces of variable exponent and Riesz potentials
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 984 - 1002
  • [50] EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE EXPONENT HAJŁASZ-MORREY-SOBOLEV SPACES
    Edmunds, David E.
    Makharadze, Dali
    Meskhi, Alexander
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 201 - 217