A primal–dual online algorithm for the k-server problem on weighted HSTs

被引:0
|
作者
Wenbin Chen
Fufang Li
Jianxiong Wang
Ke Qi
Maobin Tang
Xiuni Wang
机构
[1] Guangzhou University,Department of Computer Science and Guangdong Provincial Engineering Technology Research Center for Mathematical Educational Software
[2] Nanjing University,State Key Laboratory for Novel Software Technology
来源
关键词
-server problem; Online algorithm; Primal–dual method; Randomized algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that there is a 52ℓ·ln(1+k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2}\ell \cdot \ln (1+k)$$\end{document}-competitive randomized algorithm for the k-sever problem on weighted Hierarchically Separated Trees (HSTs) with depth ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} when n=k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=k+1$$\end{document} where n is the number of points in the metric space, which improved previous best competitive ratio 12ℓln(1+4ℓ(1+k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12 \ell \ln (1+4\ell (1+k))$$\end{document} by Bansal et al. (FOCS, pp 267–276, 2011).
引用
收藏
页码:1133 / 1146
页数:13
相关论文
共 50 条
  • [41] The k-server problem: A reinforcement learning approach
    Leandro, M
    Neto, ADD
    Melo, JD
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 798 - 802
  • [42] The CNN problem and other k-server variants
    Koutsoupias, E
    Taylor, DS
    STACS 2000: 17TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2000, 1770 : 581 - 592
  • [43] Randomized Memoryless Algorithms for the Weighted and the Generalized k-server Problems
    Chiplunkar, Ashish
    Vishwanathan, Sundar
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [44] The K-server problem via a modern optimization lens
    Bertsimas, Dimitris
    Jaillet, Patrick
    Korolko, Nikita
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 276 (01) : 65 - 78
  • [45] Deep reinforcement learning applied to the k-server problem
    Sousa Lins, Ramon Augusto
    Neto Doria, Adriao Duarte
    de Melo, Jorge Dantas
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 135 : 212 - 218
  • [46] A fast implementation of the optimal off-line algorithm for solving the k-server problem
    Rudec, Tomislav
    Baumgartner, Alfonzo
    Manger, Robert
    MATHEMATICAL COMMUNICATIONS, 2009, 14 (01) : 119 - 134
  • [47] The k-Server Problem with Advice in d Dimensions and on the Sphere
    Elisabet Burjons
    Dennis Komm
    Marcel Schöngens
    Algorithmica, 2019, 81 : 1859 - 1880
  • [48] The k-Server Problem with Advice in d Dimensions and on the Sphere
    Burjons, Elisabet
    Komm, Dennis
    Schongens, Marcel
    ALGORITHMICA, 2019, 81 (05) : 1859 - 1880
  • [49] A k-server problem with parallel requests and unit distances
    Hildenbrandt, R.
    INFORMATION PROCESSING LETTERS, 2014, 114 (05) : 239 - 246
  • [50] A Primal-Dual Online Algorithm for Online Matching Problem in Dynamic Environments
    Zhou, Yu-Hang
    Hu, Peng
    Liang, Chen
    Xu, Huan
    Huzhang, Guangda
    Feng, Yinfu
    Da, Qing
    Wang, Xinshang
    Zeng, An-Xiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11160 - 11167