A primal–dual online algorithm for the k-server problem on weighted HSTs

被引:0
|
作者
Wenbin Chen
Fufang Li
Jianxiong Wang
Ke Qi
Maobin Tang
Xiuni Wang
机构
[1] Guangzhou University,Department of Computer Science and Guangdong Provincial Engineering Technology Research Center for Mathematical Educational Software
[2] Nanjing University,State Key Laboratory for Novel Software Technology
来源
关键词
-server problem; Online algorithm; Primal–dual method; Randomized algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that there is a 52ℓ·ln(1+k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2}\ell \cdot \ln (1+k)$$\end{document}-competitive randomized algorithm for the k-sever problem on weighted Hierarchically Separated Trees (HSTs) with depth ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} when n=k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=k+1$$\end{document} where n is the number of points in the metric space, which improved previous best competitive ratio 12ℓln(1+4ℓ(1+k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12 \ell \ln (1+4\ell (1+k))$$\end{document} by Bansal et al. (FOCS, pp 267–276, 2011).
引用
收藏
页码:1133 / 1146
页数:13
相关论文
共 50 条
  • [1] A primal-dual online algorithm for the κ-server problem on weighted HSTs
    Chen, Wenbin
    Li, Fufang
    Wang, Jianxiong
    Qi, Ke
    Tang, Maobin
    Wang, Xiuni
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1133 - 1146
  • [2] Fusible HSTs and the randomized k-server conjecture
    Lee, James R.
    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 438 - 449
  • [3] The online k-server problem with rejection
    Bittner, E.
    Imreh, Cs.
    Nagy-Gyoergy, J.
    DISCRETE OPTIMIZATION, 2014, 13 : 1 - 15
  • [4] On Online Algorithms with Advice for the k-Server Problem
    Renault, Marc P.
    Rosen, Adi
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (01) : 3 - 21
  • [5] On Online Algorithms with Advice for the k-Server Problem
    Marc P. Renault
    Adi Rosén
    Theory of Computing Systems, 2015, 56 : 3 - 21
  • [6] Towards the Randomized k-Server Conjecture: A Primal-Dual Approach
    Bansal, Nikhil
    Buchbinder, Niv
    Naor, Joseph
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 40 - +
  • [7] On Randomized Memoryless Algorithms for the Weighted k-server Problem
    Chiplunkar, Ashish
    Vishwanathan, Sundar
    2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2013, : 11 - 19
  • [8] A Polylogarithmic-Competitive Algorithm for the k-Server Problem
    Bansal, Nikhil
    Buchbinder, Niv
    Madry, Aleksander
    Naor, Joseph
    JOURNAL OF THE ACM, 2015, 62 (05)
  • [9] The k-server problem
    Koutsoupias, Elias
    COMPUTER SCIENCE REVIEW, 2009, 3 (02) : 105 - 118
  • [10] Randomized algorithm for the k-server problem on decomposable spaces
    Nagy-Gyorgy, Judit
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 411 - 419