Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation

被引:0
|
作者
Guang Chen
Zhihong Ke
Chengzu Ren
Jun Li
机构
[1] Tianjin University,Key Laboratory of Equipment Design and Manufacturing Technology
[2] Tianjin University,Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education
关键词
constitutive model; Ti-6Al-4V alloy; SHPB test; high strain rate; machining;
D O I
暂无
中图分类号
学科分类号
摘要
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104–106 s–1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10–4–104s–1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3×104 s–1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10–4–104 s–1) and simulation (up to 3×104 s–1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.
引用
收藏
页码:962 / 970
页数:8
相关论文
共 50 条
  • [41] Finite element simulation of cutting forces in orthogonal machining of titanium alloy Ti-6Al-4V
    Kandráč, Ladislav
    Maňková, Ildikó
    Vrabeľ, Marek
    Beňo, Jozef
    Applied Mechanics and Materials, 2014, 474 : 192 - 199
  • [42] Machine Learning Based Predictive Modeling of Machining Induced Microhardness and Grain Size in Ti-6Al-4V Alloy
    Arisoy, Yigit M.
    Ozel, Tugrul
    MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (04) : 425 - 433
  • [43] Optimization of Wire Electric Discharge Machining Parameters in Machining of Ti-6Al-4V Alloy
    Sneha, P.
    Mahamani, A.
    Kakaravada, Ismail
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 6722 - 6727
  • [44] STRUCTURE AND PITTING CORROSION OF Ti-6Al-4V ALLOY AND Ti-6Al-4V WELDS
    Ferdinandov, Nikolay Vasilev
    Gospodinov, Danail Dimitrov
    Ilieva, Mariana Dimitrova
    Radev, Rossen Hristov
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND SYSTEMS, 2018, : 325 - 330
  • [45] A modified constitutive model coupled with microstructure evolution incremental model for machining of titanium alloy Ti-6Al-4V
    Liu, Guangxin
    Zhang, Dinghua
    Yao, Changfen
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 297
  • [46] Siliconizing of Ti-6Al-4V alloy
    Zhang, Yaming
    Wang, Weilin
    Zhou, Longliang
    Li, Tiefan
    Chen, Chongwei
    Jinshu Rechuli/Heat Treatment of Metals, 1993, (01): : 21 - 24
  • [47] Energy efficient machining of Ti-6Al-4V
    Denkena, Berend
    Helmecke, Patrick
    Huelsemeyer, Lars
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2015, 64 (01) : 61 - 64
  • [48] MACHINABILITY OF TI-6AL-4V ALLOY
    NAKAMURA, S
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1985, 71 : 1648 - 1648
  • [49] Spallation in the alloy Ti-6Al-4V
    Church, PD
    Andrews, T
    Bourne, NK
    Millett, JCF
    SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 511 - 514
  • [50] Microstructure of Ti-6Al-4V alloy
    Kim, Tae Wan
    Yoon, Yo Han
    Oh, Ho Ra
    Park, Jong Bum
    Lee, Jung-Il
    Ryu, Jeong Ho
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2016, 26 (03): : 126 - 130