The Pascal Visual Object Classes Challenge: A Retrospective

被引:0
|
作者
Mark Everingham
S. M. Ali Eslami
Luc Van Gool
Christopher K. I. Williams
John Winn
Andrew Zisserman
机构
[1] University of Leeds,
[2] Microsoft Research,undefined
[3] KU Leuven,undefined
[4] ETH,undefined
[5] University of Edinburgh,undefined
[6] University of Oxford,undefined
来源
关键词
Database; Benchmark; Object recognition; Object detection; Segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this paper we provide a review of the challenge from 2008–2012. The paper is intended for two audiences: algorithm designers, researchers who want to see what the state of the art is, as measured by performance on the VOC datasets, along with the limitations and weak points of the current generation of algorithms; and, challenge designers, who want to see what we as organisers have learnt from the process and our recommendations for the organisation of future challenges. To analyse the performance of submitted algorithms on the VOC datasets we introduce a number of novel evaluation methods: a bootstrapping method for determining whether differences in the performance of two algorithms are significant or not; a normalised average precision so that performance can be compared across classes with different proportions of positive instances; a clustering method for visualising the performance across multiple algorithms so that the hard and easy images can be identified; and the use of a joint classifier over the submitted algorithms in order to measure their complementarity and combined performance. We also analyse the community’s progress through time using the methods of Hoiem et al. (Proceedings of European Conference on Computer Vision, 2012) to identify the types of occurring errors. We conclude the paper with an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
引用
收藏
页码:98 / 136
页数:38
相关论文
共 50 条
  • [21] PROGRAMMING WITH OBJECT-PASCAL, PASCAL 5.5 FROM BORLAND INTERNATIONAL
    WIENER, RS
    JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 1989, 2 (02): : 62 - 65
  • [22] The PASCAL recognising textual entailment challenge
    Dagan, Ido
    Glickman, Oren
    Magnini, Bernardo
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 177 - 190
  • [23] OBJECT-ORIENTED PROGRAMMING IN PASCAL
    SHAMMAS, NC
    DR DOBBS JOURNAL, 1988, 13 (01): : 108 - &
  • [24] LIST AND GRAPH ALGORITHMS IN OBJECT PASCAL
    SCHAERER, DE
    SCHAUER, H
    JOURNAL OF MICROCOMPUTER APPLICATIONS, 1991, 14 (03): : 229 - 261
  • [25] God as an object of knowledge in the works of Pascal
    Harrington, TM
    REVUE DES SCIENCES HUMAINES, 1996, (244): : 31 - 51
  • [26] CONTAINER OBJECT TYPES IN TURBO PASCAL
    HEJLSBERG, A
    DR DOBBS JOURNAL, 1989, 14 (11): : 56 - &
  • [27] The Seventh Visual Object Tracking VOT2019 Challenge Results
    Kristanl, Matej
    Matas, Jiri
    Leonardis, Ales
    Felsberg, Michael
    Pflugfelder, Roman
    Kamarainen, Joni-Kristian
    Zajc, Luka Cehovin
    Drbohlav, Ondrej
    Lukezic, Alan
    Berg, Amanda
    Eldesokey, Abdelrahman
    Kapyla, Jani
    Fernandez, Gustavo
    Gonzalez-Garcia, Abel
    Memarrnoghadam, Alireza
    Lu, Andong
    He, Anfeng
    Varfolomieiev, Anton
    Chan, Antoni
    Tripathi, Ardhendu Shekhar
    Smeulders, Arnold
    Pedasingu, Bala Suraj
    Chen, Bao Xin
    Zhang, Baopeng
    Wu, Baoyuan
    Li, Bi
    He, Bin
    Yan, Bin
    Bai, Bing
    Li, Bing
    Li, Bo
    Kim, Bycong Hak
    Ma, Chao
    Fang, Chen
    Qian, Chen
    Chen, Cheng
    Li, Chenglong
    Zhang, Chengquan
    Tsai, Chi-Yi
    Luo, Chong
    Micheloni, Christian
    Zhang, Chunhui
    Tao, Dacheng
    Gupta, Deepak
    Song, Dejia
    Wang, Dong
    Gavves, Efstratios
    Yi, Eunu
    Khan, Fahad Shahbaz
    Zhang, Fangyi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2206 - 2241
  • [28] The Sixth Visual Object Tracking VOT2018 Challenge Results
    Kristan, Matej
    Leonardis, Ales
    Matas, Jiri
    Felsberg, Michael
    Pflugfelder, Roman
    Zajc, Luka Cehovin
    Vojir, Tomas
    Bhat, Goutam
    Lukezic, Alan
    Eldesokey, Abdelrahman
    Fernandez, Gustavo
    Garcia-Martin, Alvaro
    Iglesias-Arias, Alvaro
    Alatan, A. Aydin
    Gonzalez-Garcia, Abel
    Petrosino, Alfredo
    Memarmoghadam, Alireza
    Vedaldi, Andrea
    Muhic, Andrej
    He, Anfeng
    Smeulders, Arnold
    Perera, Asanka G.
    Li, Bo
    Chen, Boyu
    Kim, Changick
    Xu, Changsheng
    Xiong, Changzhen
    Tian, Cheng
    Luo, Chong
    Sun, Chong
    Hao, Cong
    Kim, Daijin
    Mishra, Deepak
    Chen, Deming
    Wang, Dong
    Wee, Dongyoon
    Gavves, Efstratios
    Gundogdu, Erhan
    Velasco-Salido, Erik
    Khan, Fahad Shahbaz
    Yang, Fan
    Zhao, Fei
    Li, Feng
    Battistone, Francesco
    De Ath, George
    Subrahmanyam, Gorthi R. K. S.
    Bastos, Guilherme
    Ling, Haibin
    Galoogahi, Hamed Kiani
    Lee, Hankyeol
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 3 - 53
  • [29] The Ninth Visual Object Tracking VOT2021 Challenge Results
    Kristan, Matej
    Matas, Jiri
    Leonardis, Ales
    Felsberg, Michael
    Pflugfelder, Roman
    Kamarainen, Joni-Kristian
    Chang, Hyung Jin
    Danelljan, Martin
    Zajc, Luka Cehovin
    Lukezic, Alan
    Drbohlav, Ondrej
    Kapyla, Jani
    Hager, Gustav
    Yan, Song
    Yang, Jinyu
    Zhang, Zhongqun
    Fernandez, Gustavo
    Abdelpakey, Mohamed
    Bhat, Goutam
    Cerkezi, Llukman
    Cevikalp, Hakan
    Chen, Shengyong
    Chen, Xin
    Cheng, Miao
    Cheng, Ziyi
    Chiu, Yu-Chen
    Cirakman, Ozgun
    Cui, Yutao
    Dai, Kenan
    Dasari, Mohana Murali
    Deng, Qili
    Dong, Xingping
    Du, Daniel K.
    Dunnhofer, Matteo
    Feng, Zhen-Hua
    Feng, Zhiyong
    Fu, Zhihong
    Ge, Shiming
    Gorthi, Rama Krishna
    Gu, Yuzhang
    Gunsel, Bilge
    Guo, Qing
    Gurkan, Filiz
    Han, Wencheng
    Huang, Yanyan
    Lawin, Felix Jaremo
    Jhang, Shang-Jhih
    Ji, Rongrong
    Jiang, Cheng
    Jiang, Yingjie
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2711 - 2738
  • [30] The Tenth Visual Object Tracking VOT2022 Challenge Results
    Kristan, Matej
    Leonardis, Aleš
    Matas, Jiří
    Felsberg, Michael
    Pflugfelder, Roman
    Kämäräinen, Joni-Kristian
    Chang, Hyung Jin
    Danelljan, Martin
    Zajc, Luka Čehovin
    Lukežič, Alan
    Drbohlav, Ondrej
    Björklund, Johanna
    Zhang, Yushan
    Zhang, Zhongqun
    Yan, Song
    Yang, Wenyan
    Cai, Dingding
    Mayer, Christoph
    Fernández, Gustavo
    Ben, Kang
    Bhat, Goutam
    Chang, Hong
    Chen, Guangqi
    Chen, Jiaye
    Chen, Shengyong
    Chen, Xilin
    Chen, Xin
    Chen, Xiuyi
    Chen, Yiwei
    Chen, Yu-Hsi
    Chen, Zhixing
    Cheng, Yangming
    Ciaramella, Angelo
    Cui, Yutao
    Džubur, Benjamin
    Dasari, Mohana Murali
    Deng, Qili
    Dhar, Debajyoti
    Di, Shangzhe
    Nardo, Emanuel Di
    Du, Daniel K.
    Dunnhofer, Matteo
    Fan, Heng
    Feng, Zhenhua
    Fu, Zhihong
    Gao, Shang
    Gorthi, Rama Krishna
    Granger, Eric
    Gu, Q.H.
    Gupta, Himanshu
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 13808 LNCS : 431 - 460