Meta-learning based selection of software reliability models

被引:0
|
作者
Rafael Caiuta
Aurora Pozo
Silvia Regina Vergilio
机构
[1] Federal University of Paraná (UFPR),Computer Science Department
来源
关键词
Software reliability models; Meta-learning; Data mining;
D O I
暂无
中图分类号
学科分类号
摘要
The correct estimation of the software reliability level is fundamental to reduce efforts in the testing, maintenance and release activities. To help in this task, we find in the literature an increasing number of software reliability models (SRMs). However, none has proved to perform well considering different contexts. Due to this, the selection of the best model for a particular case is an important task. Most existing works on SRM selection need to test different models and decide based on how well the model fits the data and predicts the future events. Moreover, in general, they do not consider search-based models. Considering this fact, this paper introduces a Meta-learning approach for SRM selection. In such approach, some meta-features are used to indicate the best performing model. The approach is independent of the type of models to be selected, and can be used with different data mining algorithms. It includes the following activities: meta-knowledge extraction, meta-learning and classification. The activities meta-knowledge extraction and meta-learning are performed just once and generate a meta-classifier. Therefore, the meta-classifier is used to select the most adequate model for new projects (classification activity). The approach is evaluated in a set of experiments and the results do not show statistical difference between the Meta-learning approach and the choice of the best performing model. Otherwise, the results point out statistical difference between the Meta-learning approach and the choice of the worst performing model with a large stochastic difference according to the Vargha and Delaney Effect Size.
引用
收藏
页码:575 / 602
页数:27
相关论文
共 50 条
  • [41] On the use of meta-learning for instance selection: An architecture and an experimental study
    Leyva, Enrique
    Caises, Yoel
    Gonzalez, Antonio
    Perez, Raul
    INFORMATION SCIENCES, 2014, 266 : 16 - 30
  • [42] Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection
    Smith-Miles, Kate A.
    ACM COMPUTING SURVEYS, 2008, 41 (01)
  • [43] BRAINSTORMING Agent based Meta-learning Approach
    Plewczynski, Dariusz
    ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2011, : 487 - 490
  • [44] A Meta-Learning Architecture based on Linked Data
    Dos Santos, Ricardo
    Aguilar, Jose
    Puerto, Eduard
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [45] Meta-learning Based Evolutionary Clustering Algorithm
    Tomp, Dmitry
    Muravyov, Sergey
    Filchenkov, Andrey
    Parfenov, Vladimir
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I, 2019, 11871 : 502 - 513
  • [46] Meta-learning in Reinforcement Learning
    Schweighofer, N
    Doya, K
    NEURAL NETWORKS, 2003, 16 (01) : 5 - 9
  • [47] Meta-learning from learning curves for budget-limited algorithm selection
    Nguyen, Manh Hung
    Hosoya, Lisheng Sun
    Guyon, Isabelle
    PATTERN RECOGNITION LETTERS, 2024, 185 : 225 - 231
  • [48] A meta-learning system based on genetic algorithms
    Pellerin, E
    Pigeon, L
    Delisle, S
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI, 2004, 5433 : 65 - 73
  • [49] Learning to Forget for Meta-Learning
    Baik, Sungyong
    Hong, Seokil
    Lee, Kyoung Mu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2376 - 2384
  • [50] Submodular Meta-Learning
    Adibi, Arman
    Mokhtari, Aryan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33