Parameterized Complexity of Superstring Problems

被引:0
|
作者
Ivan Bliznets
Fedor V. Fomin
Petr A. Golovach
Nikolay Karpov
Alexander S. Kulikov
Saket Saurabh
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences,Department of Informatics
[2] University of Bergen,undefined
[3] Institute of Mathematical Sciences,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Shortest superstring; Parameterized complexity; Kernelization;
D O I
暂无
中图分类号
学科分类号
摘要
In the Shortest Superstring problem we are given a set of strings S={s1,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\{s_1, \ldots , s_n\}$$\end{document} and integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the question is to decide whether there is a superstring s of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing all strings of S as substrings. We obtain several parameterized algorithms and complexity results for this problem. In particular, we give an algorithm which in time 2O(k)poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k)} {\text {poly}}(n)$$\end{document} finds a superstring of length at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} containing at least k strings of S. We complement this by a lower bound showing that such a parameterization does not admit a polynomial kernel up to some complexity assumption. We also obtain several results about “below guaranteed values” parameterization of the problem. We show that parameterization by compression admits a polynomial kernel while parameterization “below matching” is hard.
引用
收藏
页码:798 / 813
页数:15
相关论文
共 50 条
  • [21] Parameterized complexity of constraint satisfaction problems
    Marx, D
    COMPUTATIONAL COMPLEXITY, 2005, 14 (02) : 153 - 183
  • [22] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 131 - +
  • [23] Parameterized Complexity of Directed Spanner Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lochet, William
    Misra, Pranabendu
    Saurabh, Saket
    Sharma, Roohani
    ALGORITHMICA, 2022, 84 (08) : 2292 - 2308
  • [24] Parameterized complexity of generalized domination problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 780 - 792
  • [25] Parameterized complexity of fair deletion problems
    Masarik, Tomas
    Toufar, Tomas
    DISCRETE APPLIED MATHEMATICS, 2020, 278 : 51 - 61
  • [26] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 314 - 336
  • [27] A survey on the parameterized complexity of reconfiguration problems
    Bousquet, Nicolas
    Mouawad, Amer E.
    Nishimura, Naomi
    Siebertz, Sebastian
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [28] Parameterized Complexity of Generalized Domination Problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 133 - +
  • [29] Parameterized Complexity of Secluded Connectivity Problems
    Fomin, Fedor V.
    Golovach, Petr A.
    Karpov, Nikolay
    Kulikov, Alexander S.
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 795 - 819
  • [30] The parameterized complexity of maximality and minimality problems
    Chen, Yijia
    Flum, Joerg
    ANNALS OF PURE AND APPLIED LOGIC, 2008, 151 (01) : 22 - 61