Modelling, prediction and classification of student academic performance using artificial neural networks

被引:0
|
作者
E. T. Lau
L. Sun
Q. Yang
机构
[1] Brunel University London,
[2] Qufu Normal University,undefined
来源
SN Applied Sciences | 2019年 / 1卷
关键词
Academic performance; Statistical analysis; Artificial neural network; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
The conventional statistical evaluations are limited in providing good predictions of the university educational quality. This paper presents an approach with both conventional statistical analysis and neural network modelling/prediction of students’ performance. Conventional statistical evaluations are used to identify the factors that likely affect the students’ performance. The neural network is modelled with 11 input variables, two layers of hidden neurons, and one output layer. Levenberg–Marquardt algorithm is employed as the backpropagation training rule. The performance of neural network model is evaluated through the error performance, regression, error histogram, confusion matrix and area under the receiver operating characteristics curve. Overall, the neural network model has achieved a good prediction accuracy of 84.8%, along with limitations.
引用
收藏
相关论文
共 50 条
  • [41] Performance prediction of a solar thermal energy system using artificial neural networks
    Yaici, Wahiba
    Entchev, Evgueniy
    APPLIED THERMAL ENGINEERING, 2014, 73 (01) : 1348 - 1359
  • [42] Prediction of bond performance of tension lap splices using artificial neural networks
    Hwang, Hyeon-Jong
    Baek, Jang-Woon
    Kim, Jae-Yo
    Kim, Chang-Soo
    ENGINEERING STRUCTURES, 2019, 198
  • [43] Prediction Model for the Performance of Different PV Modules Using Artificial Neural Networks
    Jaber, Mahmoud
    Abd Hamid, Ag Sufiyan
    Sopian, Kamaruzzaman
    Fazlizan, Ahmad
    Ibrahim, Adnan
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [44] PREDICTION OF PERFORMANCE AND EMISSION PARAMETERS OF AN SI ENGINE BY USING ARTIFICIAL NEURAL NETWORKS
    Atik, Kemal
    Kahraman, Nafiz
    Ceper, Bilge Albayrak
    ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2013, 33 (02) : 57 - 64
  • [45] Performance prediction of a liquid desiccant dehumidifier using artificial neural networks approach
    Bouzeffour, Fatih
    Khelidj, Benyoucef
    Yahi, Ferhat
    Belkacemi, Djelloul
    Taane, Walid
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2020, 27 (02) : 211 - 225
  • [46] Performance prediction of a RPF-fired boiler using artificial neural networks
    Behera, Shishir Kumar
    Rene, Eldon R.
    Kim, Min Choul
    Park, Hung-Suck
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (08) : 995 - 1007
  • [47] Performance evaluation of Protein structural class prediction using Artificial Neural networks
    Panda, Bishnupriya
    Mishra, Ambika Prasad
    Majhi, Babita
    Rout, Minakhi
    2013 INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTIONS (ICHCI), 2013,
  • [48] Geothermal Power Plant System Performance Prediction Using Artificial Neural Networks
    Ruliandi, Dimas
    2015 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH), 2015, : 216 - 223
  • [49] Prediction of compression strength of high performance concrete using artificial neural networks
    Torre, A.
    Garcia, F.
    Moromi, I.
    Espinoza, P.
    Acuna, L.
    VII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2015, 582
  • [50] Comparative analysis of two artificial neural networks using pavement performance prediction
    Roberts, Craig A.
    Attoh-Okine, Nii O.
    Computer-Aided Civil and Infrastructure Engineering, 1998, 13 (05): : 339 - 348