The non-abelian self-dual string

被引:0
|
作者
Christian Sämann
Lennart Schmidt
机构
[1] Heriot-Watt University,Maxwell Institute for Mathematical Sciences, Department of Mathematics
来源
关键词
Self-dual strings; String group; Higher gauge theory; Superconformal field theories; Strong homotopy lie algebras; 70S15; 18G55; 55P50; 53B50;
D O I
暂无
中图分类号
学科分类号
摘要
We argue that the relevant higher gauge group for the non-abelian generalization of the self-dual string equation is the string 2-group. We then derive the corresponding equations of motion and discuss their properties. The underlying geometric picture is a string structure, i.e., a categorified principal bundle with connection whose structure 2-group is the string 2-group. We readily write down the explicit elementary solution to our equations, which is the categorified analogue of the ’t Hooft–Polyakov monopole. Our solution passes all the relevant consistency checks; in particular, it is globally defined on R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} and approaches the abelian self-dual string of charge one at infinity. We note that our equations also arise as the BPS equations in a recently proposed six-dimensional superconformal field theory and we show that with our choice of higher gauge structure, the action of this theory can be reduced to four-dimensional supersymmetric Yang–Mills theory.
引用
收藏
页码:1001 / 1042
页数:41
相关论文
共 50 条
  • [21] Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model
    Xiaosen Han
    Gabriella Tarantello
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 1149 - 1176
  • [22] SELF-DUAL NON-ABELIAN VORTICES IN A PHI(2) CHERN-SIMONS THEORY
    ANTILLON, A
    ESCALONA, J
    GERMAN, G
    TORRES, M
    PHYSICS LETTERS B, 1995, 359 (3-4) : 327 - 333
  • [23] The existence of self-dual vortices in a non-Abelian Φ2 Chern-Simons theory
    Chen, Shouxin
    Wang, Ying
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [24] Non-Abelian string conductivity
    Physical Review D Particles, Fields, Gravitation and Cosmology, 56 (02):
  • [25] Non-Abelian string conductivity
    Kibble, TWB
    Lozano, G
    Yates, AJ
    PHYSICAL REVIEW D, 1997, 56 (02): : 1204 - 1214
  • [26] RADIATIVE-CORRECTIONS TO NON-ABELIAN GAUGE-THEORY IN HOMOGENEOUS SELF-DUAL BACKGROUNDS
    EBERLEIN, C
    KAISER, HJ
    WIECZOREK, E
    ANNALEN DER PHYSIK, 1991, 48 (05) : 343 - 352
  • [27] Classification of the entire radial self-dual solutions to non-Abelian Chern-Simons systems
    Huang, Hsin-Yuan
    Lin, Chang-Shou
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (12) : 6796 - 6841
  • [28] Doubly periodic self-dual vortices in a relativistic non-Abelian Chern-Simons model
    Han, Xiaosen
    Tarantello, Gabriella
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) : 1149 - 1176
  • [29] Self-gravitating non-abelian cosmic string solution
    Slagter, RJ
    PHYSICAL REVIEW D, 1999, 59 (02):
  • [30] Self-dual non-Abelian N=1 tensor multiplet in D=2+2 dimensions
    Nishino, Hitoshi
    Rajpoot, Subhash
    NUCLEAR PHYSICS B, 2012, 863 (03) : 510 - 524