Travelling helices and the vortex filament conjecture in the incompressible Euler equations

被引:0
|
作者
Juan Dávila
Manuel del Pino
Monica Musso
Juncheng Wei
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Universidad de Antioquia,Instituto de Matemáticas
[3] University of British Columbia,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Euler equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document} expressed in vorticity form ω→t+(u·∇)ω→=(ω→·∇)uu=curlψ→,-Δψ→=ω→.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} \vec \omega _t + (\mathbf{u}\cdot {\nabla } ){\vec \omega } =( \vec \omega \cdot {\nabla } ) \mathbf{u} \\ \mathbf{u} = \mathrm{curl}\vec \psi ,\ -\Delta \vec \psi = \vec \omega . \end{array}\right. \end{aligned}$$\end{document}A classical question that goes back to Helmholtz is to describe the evolution of solutions with a high concentration around a curve. The work of Da Rios in 1906 states that such a curve must evolve by the so-called binormal curvature flow. Existence of true solutions concentrated near a given curve that evolves by this law is a long-standing open question that has only been answered for the special case of a circle travelling with constant speed along its axis, the thin vortex-rings. We provide what appears to be the first rigorous construction of helical filaments, associated to a translating-rotating helix. The solution is defined at all times and does not change form with time. The result generalizes to multiple polygonal helical filaments travelling and rotating together.
引用
收藏
相关论文
共 50 条