Travelling helices and the vortex filament conjecture in the incompressible Euler equations

被引:0
|
作者
Juan Dávila
Manuel del Pino
Monica Musso
Juncheng Wei
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Universidad de Antioquia,Instituto de Matemáticas
[3] University of British Columbia,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Euler equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document} expressed in vorticity form ω→t+(u·∇)ω→=(ω→·∇)uu=curlψ→,-Δψ→=ω→.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} \vec \omega _t + (\mathbf{u}\cdot {\nabla } ){\vec \omega } =( \vec \omega \cdot {\nabla } ) \mathbf{u} \\ \mathbf{u} = \mathrm{curl}\vec \psi ,\ -\Delta \vec \psi = \vec \omega . \end{array}\right. \end{aligned}$$\end{document}A classical question that goes back to Helmholtz is to describe the evolution of solutions with a high concentration around a curve. The work of Da Rios in 1906 states that such a curve must evolve by the so-called binormal curvature flow. Existence of true solutions concentrated near a given curve that evolves by this law is a long-standing open question that has only been answered for the special case of a circle travelling with constant speed along its axis, the thin vortex-rings. We provide what appears to be the first rigorous construction of helical filaments, associated to a translating-rotating helix. The solution is defined at all times and does not change form with time. The result generalizes to multiple polygonal helical filaments travelling and rotating together.
引用
收藏
相关论文
共 50 条
  • [1] Travelling helices and the vortex filament conjecture in the incompressible Euler equations
    Davila, Juan
    del Pino, Manuel
    Musso, Monica
    Wei, Juncheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [2] On the Vortex Filament Conjecture for Euler Flows
    Robert L. Jerrard
    Christian Seis
    Archive for Rational Mechanics and Analysis, 2017, 224 : 135 - 172
  • [3] On the Vortex Filament Conjecture for Euler Flows
    Jerrard, Robert L.
    Seis, Christian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) : 135 - 172
  • [4] Turing Universality of the Incompressible Euler Equations and a Conjecture of Moore
    Cardona, Robert
    Miranda, Eva
    Peralta-Salas, Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (22) : 18092 - 18109
  • [5] Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains
    Bardos, Claude
    Titi, Edriss S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 197 - 207
  • [6] Onsager’s Conjecture for the Incompressible Euler Equations in Bounded Domains
    Claude Bardos
    Edriss S. Titi
    Archive for Rational Mechanics and Analysis, 2018, 228 : 197 - 207
  • [7] Clustered travelling vortex rings to the axisymmetric three-dimensional incompressible Euler flows
    Ao, Weiwei
    Liu, Yong
    Wei, Juncheng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 434
  • [8] Weak solutions to the incompressible Euler equations with vortex sheet initial data
    Szekelyhidi, Laszlo, Jr.
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) : 1063 - 1066
  • [9] Traveling vortex pairs for 2D incompressible Euler equations
    Daomin Cao
    Shanfa Lai
    Weicheng Zhan
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [10] Traveling vortex pairs for 2D incompressible Euler equations
    Cao, Daomin
    Lai, Shanfa
    Zhan, Weicheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)