S-nitrosylation of endothelial nitric oxide synthase impacts erectile function

被引:0
|
作者
Parviz K. Kavoussi
Ryan P. Smith
Janine L. Oliver
Raymond A. Costabile
William D. Steers
Katie Brown-Steinke
Kimberly de Ronde
Jeffrey J. Lysiak
Lisa A. Palmer
机构
[1] University of Virginia School of Medicine,Department of Urology
[2] University of Virginia School of Medicine,Department of Pediatrics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Neuronal and endothelial nitric oxide synthases (nNOS and eNOS respectively) play major roles in generating the nitric oxide bioactivity necessary for erectile function. S-nitrosylation has been shown to regulate NOS activity. The presence of S-nitrosylated NOS in the penis and the impact of NOS S-nitrosylation/denitrosylation on erectile function were examined. S-nitrosylated forms of NOS were identified by biotin-switch assay followed by western blot analysis. Erectile function in S-nitrosoglutathione reductase deficient (GSNO+/−) and null (GSNO−/−) mice were assessed by continuous cavernous nerve electrical stimulation (CCNES). Glutathione ethyl ester (GSHee) was used to manipulate S-nitrosylated NOS levels. Immunohistological and immunofluorescence analyses were used to identify the location of eNOS and GSNO-R in corporal tissue. eNOS and nNOS were S-nitrosylated in unstimulated penises of the mice. CCNES resulted in a time-dependent increase in eNOS S-nitrosylation with peak eNOS S-nitrosylation observed during detumescence. S-nitrosylated nNOS levels were unchanged. Intracorporal injection of GSHee reduced S-nitrosylated eNOS levels, enhancing time to maximum intracorporal pressure (ICP). eNOS and GSNO-R co-localize to the endothelium of the corpus cavernosum in the mouse and the human. ICP measurements obtained during CCNES demonstrate GSNO-R+/− and GSNO-R−/− animals cannot maintain an elevated ICP. Results suggest eNOS S-nitrosylation/denitrosylation is an important mechanism regulating eNOS activity during erectile function. GSNO-R is a key enzyme involved in the eNOS denitrosylation. The increase in eNOS S-nitrosylation (inactivation) observed with tumescence may begin a cycle leading to detumescence. Clinically this may indicate that alterations in the balance of S-nitrosylation/denitrosylation either directly or indirectly contribute to erectile dysfunction.
引用
收藏
页码:31 / 38
页数:7
相关论文
共 50 条
  • [31] Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells
    Zhu, Wenzhen
    Yang, Bingwu
    Fu, Huiling
    Ma, Long
    Liu, Tingting
    Chai, Rongfei
    Zheng, Zhaodi
    Zhang, Qunye
    Li, Guorong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 458 (03) : 590 - 595
  • [32] Visualization of Protein S-Nitrosylation Reveals Essential Roles of Nitric Oxide in Endothelial Signaling Homeostasis
    Hsu, Ming-Fo
    Chen, Yi-Yun
    Chang, Geen-Dong
    Meng, Tzu-Ching
    FREE RADICAL BIOLOGY AND MEDICINE, 2012, 53 : S183 - S183
  • [33] Protein S-nitrosylation:: a physiological signal for neuronal nitric oxide
    Jaffrey, SR
    Erdjument-Bromage, H
    Ferris, CD
    Tempst, P
    Snyder, SH
    NATURE CELL BIOLOGY, 2001, 3 (02) : 193 - 197
  • [34] Nitric oxide and S-nitrosylation: excitotoxic and cell signaling mechanism
    Nelson, EJ
    Connolly, J
    McArthur, P
    BIOLOGY OF THE CELL, 2003, 95 (01) : 3 - 8
  • [35] Protein S-nitrosylation: a physiological signal for neuronal nitric oxide
    Samie R. Jaffrey
    Hediye Erdjument-Bromage
    Christopher D. Ferris
    Paul Tempst
    Solomon H. Snyder
    Nature Cell Biology, 2001, 3 : 193 - 197
  • [36] Nitric oxide activates TRP channels by cysteine S-nitrosylation
    Yoshida, Takashi
    Inoue, Ryuji
    Morii, Takashi
    Takahashi, Nobuaki
    Yamamoto, Shinichiro
    Hara, Yuji
    Tominaga, Makoto
    Shimizu, Shunichi
    Sato, Yoji
    Mori, Yasuo
    NATURE CHEMICAL BIOLOGY, 2006, 2 (11) : 596 - 607
  • [37] Nitric oxide activates TRP channels by cysteine S-nitrosylation
    Takashi Yoshida
    Ryuji Inoue
    Takashi Morii
    Nobuaki Takahashi
    Shinichiro Yamamoto
    Yuji Hara
    Makoto Tominaga
    Shunichi Shimizu
    Yoji Sato
    Yasuo Mori
    Nature Chemical Biology, 2006, 2 : 596 - 607
  • [38] Nitric Oxide and S-Nitrosylation in Cancers: Emphasis on Breast Cancer
    Mishra, Deepshikha
    Patel, Vaibhav
    Banerjee, Debabrata
    BREAST CANCER-BASIC AND CLINICAL RESEARCH, 2020, 14
  • [39] Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation
    Raju, Karthik
    Doulias, Paschalis-Thomas
    Evans, Perry
    Krizman, Elizabeth N.
    Jackson, Joshua G.
    Horyn, Oksana
    Daikhin, Yevgeny
    Nissim, Ilana
    Yudkoff, Marc
    Nissim, Itzhak
    Sharp, Kim A.
    Robinson, Michael B.
    Ischiropoulos, Harry
    SCIENCE SIGNALING, 2015, 8 (384)
  • [40] Nitric oxide increases activity of Parkin via S-nitrosylation
    Ozawa, Kentaro
    Komatsubara, Akira
    Kawafune, Hiroto
    Zhao, Jing
    Kyotani, Yoji
    Ito, Satoyasu
    Nagayama, Kosuke
    Tsuji, Yuichi
    Masanori, Yoshizumi
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2013, 121 : 95P - 95P