Arens regularity of projective tensor products

被引:0
|
作者
Vandana Rajpal
Ajay Kumar
机构
[1] University of Delhi,Department of Mathematics
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Operator space projective tensor norm; Haagerup tensor norm; Arens regularity; Primary 46L06; Secondary 46L07; 47L25;
D O I
暂无
中图分类号
学科分类号
摘要
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} (respectively the Haagerup tensor product A⊗hB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{h}B}$$\end{document}) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, A⊗γB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{\gamma} B}$$\end{document} is Arens regular if A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} and A⊗^Bop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B^{op}}$$\end{document} are Arens regular whereas A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} is Arens regular if and only if A⊗hB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{h}B}$$\end{document} and B⊗hA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\otimes^{h}A}$$\end{document} are, where ⊗h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\otimes^h}$$\end{document}, ⊗γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\otimes^{\gamma}}$$\end{document}, and ⊗^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\otimes}}$$\end{document} are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.
引用
收藏
页码:531 / 541
页数:10
相关论文
共 50 条