Arens regularity of projective tensor products

被引:0
|
作者
Vandana Rajpal
Ajay Kumar
机构
[1] University of Delhi,Department of Mathematics
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Operator space projective tensor norm; Haagerup tensor norm; Arens regularity; Primary 46L06; Secondary 46L07; 47L25;
D O I
暂无
中图分类号
学科分类号
摘要
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} (respectively the Haagerup tensor product A⊗hB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{h}B}$$\end{document}) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, A⊗γB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{\gamma} B}$$\end{document} is Arens regular if A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} and A⊗^Bop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B^{op}}$$\end{document} are Arens regular whereas A⊗^B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\widehat{\otimes}B}$$\end{document} is Arens regular if and only if A⊗hB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A\otimes^{h}B}$$\end{document} and B⊗hA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\otimes^{h}A}$$\end{document} are, where ⊗h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\otimes^h}$$\end{document}, ⊗γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\otimes^{\gamma}}$$\end{document}, and ⊗^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\otimes}}$$\end{document} are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.
引用
收藏
页码:531 / 541
页数:10
相关论文
共 50 条
  • [1] Arens regularity of projective tensor products
    Rajpal, Vandana
    Kumar, Ajay
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 531 - 541
  • [2] ARENS REGULARITY OF PROJECTIVE TENSOR PRODUCT
    Kojanaghi, Mostfa Shams
    Azar, Kazem Haghnejad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1251 - 1258
  • [3] ON ARENS REGULARITY OF PROJECTIVE TENSOR PRODUCT OF SCHATTEN SPACES
    Singh, Lav Kumar
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1433 - 1441
  • [4] NOTE ON ARENS REGULARITY OF SYMMETRIC TENSOR PRODUCTS
    Taras, O.
    Zagorodnyuk, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 372 - 376
  • [5] Local existence of K-sets, projective tensor products, and Arens regularity for A(E1+•••+En)
    Graham, CC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) : 1963 - 1971
  • [6] ARENS PRODUCTS, ARENS REGULARITY AND RELATED PROBLEMS
    Matsui, Ruki
    Takahashi, Yuji
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 138 - 150
  • [7] Arens regularity and point Arens regularity of semigroup algebras
    Ramezani, R.
    Medghalchi, A. R.
    Laali, J.
    POSITIVITY, 2019, 23 (05) : 1215 - 1224
  • [8] ARENS REGULARITY AND MODULE ARENS REGULARITY OF MODULE ACTIONS
    Amini, Massoud
    Bodaghi, Abasalt
    Ettefagh, Mina
    Azar, Kazem Haghnejad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2012, 74 (02): : 75 - 86
  • [9] Arens regularity and point Arens regularity of semigroup algebras
    R. Ramezani
    A. R. Medghalchi
    J. Laali
    Positivity, 2019, 23 : 1215 - 1224
  • [10] Tensor products are projective geometries
    LeedhamGreen, CR
    OBrien, EA
    JOURNAL OF ALGEBRA, 1997, 189 (02) : 514 - 528