An efficient numerical simulation of the two-dimensional semilinear wave equation

被引:0
|
作者
Talha Achouri
机构
[1] Shaqra University,Department of Mathematics, Al
[2] Laboratoire Physique,Quwayiyah College of Science and Humanities
[3] Mathématique,Higher Institute of Applied Sciences and Technology of Sousse
[4] Modélisation Quantique et Conception Mécanique,undefined
[5] LR18ES45,undefined
[6] University of Sousse,undefined
来源
关键词
Semilinear wave equation; Finite element method; Convergence analysis; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A fully discrete finite element approximations of the solution for a semilinear wave equation is considered and analyzed in this paper. The optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error estimates for r-th order FEMs (r=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r=1, 2)$$\end{document} are derived without any restriction on the time step size. Numerical examples are given to support our theoretical results and demonstrate the efficiency of the methods.
引用
收藏
相关论文
共 50 条
  • [21] EFFICIENT NUMERICAL SCHEMES FOR TWO-DIMENSIONAL GINZBURG-LANDAU EQUATION IN SUPERCONDUCTIVITY
    Kong, Linghua
    Kuang, Liqun
    Wang, Tingchun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6325 - 6347
  • [22] Numerical solution of the two-dimensional Poincare equation
    Swart, Arno
    Sleijpen, Gerard L. G.
    Maas, Leo R. M.
    Brandts, Jan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 317 - 341
  • [23] A numerical solution of a two-dimensional transport equation
    Martin, Olga
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (02): : 191 - 198
  • [24] Model quakes in the two-dimensional wave equation
    Shaw, BE
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B12) : 27367 - 27377
  • [25] Two-dimensional numerical simulation of melt-wave erosion in solid armatures
    Weng, C.-S. (weng@njust.edu.cn), 1600, Nanjing University of Science and Technology (36):
  • [26] Numerical simulation of instability of two-dimensional convergent shock wave propagating in gas
    Liu, Jin-Hong
    Tan, Duo-Wang
    Zhang, Xu
    Zou, Li-Yong
    Huang, Wen-Bin
    Baozha Yu Chongji/Explosion and Shock Waves, 2009, 29 (06): : 601 - 606
  • [27] Study on numerical simulation for wave motion in two-dimensional elastoplastic soil layer
    Wang, Wei
    Jing, Liping
    Li, Xiaochun
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (SUPPL. 1): : 3092 - 3100
  • [28] Two-Dimensional Numerical Wave Tank Simulation for Deployment of Seafloor Mining System
    Hu, Xiao-Zhou
    Liu, Shao-Jun
    MARINE GEORESOURCES & GEOTECHNOLOGY, 2014, 32 (04) : 293 - 306
  • [29] Two-dimensional numerical simulation and experiment on strongly nonlinear wave–body interactions
    Changhong Hu
    Masashi Kashiwagi
    Journal of Marine Science and Technology, 2009, 14 : 200 - 213
  • [30] A New Numerical Approximation Method for Two-Dimensional Wave Equation with Neumann Damped Boundary
    Liu, Jiankang
    Zhang, Suying
    COMPLEXITY, 2020, 2020