Surface roughness induced device variability: 3D ab initio Monte Carlo simulation study

被引:0
|
作者
Craig L. Alexander
Asen Asenov
机构
[1] University of Glasgow,Dept. E&EE, Device Modelling Group
来源
关键词
Monte Carlo; Surface roughness scattering; Device parameter variation;
D O I
暂无
中图分类号
学科分类号
摘要
It is expected that published results from drift diffusion simulation of oxide thickness fluctuations in nano-scale devices underestimates the true intrinsic device parameter variation by neglecting local variations in surface roughness scattering. We present initial results from 3D ‘bulk’ Monte Carlo simulation including an ab initio treatment of surface roughness scattering capable of capturing such transport variation. The scattering is included directly through the real space propagation of carriers in the fluctuating potential associated with a randomly generated interface. We apply this approach to simulate inversion layer mobility in order to validate the model before its possible application in device variability simulations. Qualitative agreement is found with universal mobility data and avenues for possible calibration of surface and simulation parameters are highlighted.
引用
收藏
页码:107 / 110
页数:3
相关论文
共 50 条
  • [31] Monte Carlo simulation of water structure using the 3D potential
    Dunyashev, VS
    Bushuev, YG
    Lyashchenko, AK
    ZHURNAL FIZICHESKOI KHIMII, 1996, 70 (03): : 422 - 428
  • [32] 3D MONTE CARLO SIMULATION OF PHASE SEPARATION IN A BINARY ALLOY
    Shirinyan, A. S.
    Belogorodsky, Yu. S.
    UKRAINIAN JOURNAL OF PHYSICS, 2006, 51 (06): : 605 - 617
  • [33] Monte Carlo Simulation for Light Propagation in 3D Tooth Model
    Fu, Yongji
    Jacques, Steven L.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXII, 2011, 7897
  • [34] The system for 3D Monte Carlo molecular simulation on the computational grid
    Lei, YM
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, VOL 1, 2004, : 738 - 742
  • [35] 3D Monte-Carlo simulation of Ganymede's atmosphere
    Vorburger, Audrey
    Fatemi, Shahab
    Mogan, Shane R. Carberry
    Galli, Andre
    Liuzzo, Lucas
    Poppe, Andrew R.
    Roth, Lorenz
    Wurz, Peter
    ICARUS, 2024, 409
  • [36] A tracking algorithm for Monte Carlo simulation of surface roughness in EPMA measurements
    Sanchez-Gonzalo, D.
    Llovet, X.
    Graciani, R.
    Salvat, F.
    EMAS 2017 WORKSHOP - 15TH EUROPEAN WORKSHOP ON MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS & IUMAS-7 MEETING - 7TH MEETING OF THE INTERNATIONAL UNION OF MICROBEAM ANALYSIS SOCIETIES, 2018, 304
  • [37] 3D Monte Carlo simulation of the programming dynamics and their statistical variability in nanoscale charge-trap memories
    Amoroso, S. M.
    Maconi, A.
    Mauri, A.
    Compagnoni, C. Monzio
    Greco, E.
    Camozzi, E.
    Vigano, S.
    Tessariol, P.
    Ghetti, A.
    Spinelli, A. S.
    Lacaita, A. L.
    2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,
  • [38] Magnetization of zircon induced by 3d impurities: Ab initio calculations
    Shein, I. R.
    Bamburov, V. G.
    Ivanovskii, A. L.
    DOKLADY PHYSICAL CHEMISTRY, 2011, 438 : 90 - 93
  • [39] Magnetization of zircon induced by 3d impurities: Ab initio calculations
    I. R. Shein
    V. G. Bamburov
    A. L. Ivanovskii
    Doklady Physical Chemistry, 2011, 438 : 90 - 93
  • [40] An ionised-impurity scattering model for 3D Monte Carlo device simulation with discrete impurity distribution
    Barraud, S
    Dollfus, P
    Galdin, S
    Rengel, R
    Martín, MJ
    Velázquez, JE
    VLSI DESIGN, 2001, 13 (1-4) : 399 - 404