Equations of Motion of an Asymmetric Timoshenko Shaft

被引:0
|
作者
F. A. Raffa
F. Vatta
机构
[1] Politecnico di Torino -,Dipartimento di Meccanica corso Duca degli
来源
Meccanica | 2001年 / 36卷
关键词
Asymmetric shaft; Rotordynamics; Continuum mechanics; Fields theory;
D O I
暂无
中图分类号
学科分类号
摘要
The equations of motion of an asymmetric Timoshenko shaft, that is having unequal principal moments of inertia, are derived within the framework of the Lagrangian formulation for continuous systems and fields. The Lagrangian density of the system is calculated in a moving frame, that is a rotating frame attached to the deformed shaft, and proves to depend on the four Lagrangian variables (fields) of the system and their first derivatives w.r.t. space and time.
引用
收藏
页码:201 / 211
页数:10
相关论文
共 50 条
  • [21] A shaft finite element for analysis of viscoelastic tapered Timoshenko rotors
    Amit Bhowmick
    Smitadhi Ganguly
    Sumanta Neogy
    Arghya Nandi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [22] A shaft finite element for analysis of viscoelastic tapered Timoshenko rotors
    Bhowmick, Amit
    Ganguly, Smitadhi
    Neogy, Sumanta
    Nandi, Arghya
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 42 (01)
  • [23] Harmonic wave propagation in an infinite rotating composite timoshenko shaft
    Scott, RA
    Kim, W
    JOURNAL OF SOUND AND VIBRATION, 2001, 243 (04) : 763 - 768
  • [24] Wave reflection and transmission in an axially strained, rotating Timoshenko shaft
    Tan, CA
    Kang, B
    JOURNAL OF SOUND AND VIBRATION, 1998, 213 (03) : 483 - 510
  • [25] Wave motion in a rotating Timoshenko beam
    Brennan, MJ
    STRUCTURAL DYNAMICS: RECENT ADVANCES, VOLS 1 & 2, PROCEEDINGS, 2000, : 249 - 258
  • [26] A FINITE ROTATING SHAFT ELEMENT USING TIMOSHENKO BEAM THEORY
    NELSON, HD
    JOURNAL OF MECHANICAL DESIGN-TRANSACTIONS OF THE ASME, 1980, 102 (04): : 793 - 803
  • [27] A viscoelastic Timoshenko shaft finite element for dynamic analysis of rotors
    Ganguly, Smitadhi
    Nandi, A.
    Neogy, S.
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (11) : 2180 - 2200
  • [28] Instability of asymmetric shaft system
    Srinath, R.
    Sarkar, Abhijit
    Sekhar, A. S.
    JOURNAL OF SOUND AND VIBRATION, 2016, 362 : 276 - 291
  • [29] Stability analyses of a Timoshenko shaft with dissimilar lateral moments of inertia
    Chen, LW
    Peng, WK
    JOURNAL OF SOUND AND VIBRATION, 1997, 207 (01) : 33 - 46
  • [30] Validation of the stiffness and mass matrices obtained from the two dimensional equations of motion of curved Timoshenko beams
    Bonilla Pinto, Argenis Jesus
    Gomes Ansia, Carlos Jose
    REVISTA DE LA UNIVERSIDAD DEL ZULIA, 2023, 14 (39): : 206 - 224