Cyclic covers and Ihara’s question

被引:0
|
作者
Christopher Rasmussen
Akio Tamagawa
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
来源
Research in Number Theory | 2019年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} be a rational prime. Given a superelliptic curve C / k of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-power degree, we describe the field generated by the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-power torsion of the Jacobian variety in terms of the branch set and reduction type of C (and hence, in terms of data determined by a suitable affine model of C). If the Jacobian is good away from ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and the branch set is defined over a pro-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} extension of k(μℓ∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k({\varvec{\upmu }}_{\ell ^\infty })$$\end{document} unramified away from ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, then the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-power torsion of the Jacobian is rational over the maximal such extension. By decomposing the covering into a chain of successive cyclic ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-coverings, the mod ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} Galois representation attached to the Jacobian is decomposed into a block upper triangular form. The blocks on the diagonal of this form are further decomposed in terms of the Tate twists of certain subgroups Ws\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_s$$\end{document} of the quotients of the Jacobians of consecutive coverings. The result is a natural extension of earlier work by Anderson and Ihara, who demonstrated that a stricter condition on the branch locus guarantees the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-power torsion of the Jacobian is rational over the fixed field of the kernel of the canonical pro-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} outer Galois representation attached to an open subset of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] On covers of cyclic acts over monoids
    Mojgan Mahmoudi
    James Renshaw
    Semigroup Forum, 2008, 77
  • [32] Symmetry types of cyclic covers of the sphere
    Bujalance, Emilio
    Cirre, Francisco-Javier
    Turbek, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (01) : 61 - 83
  • [33] Explicit rank bounds for cyclic covers
    DeBlois, Jason
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (03): : 1343 - 1371
  • [34] Spinning and branched cyclic covers of knots
    Kearton, C
    Wilson, SMJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2235 - 2244
  • [35] Rings determined by cyclic covers of groups
    Cannon, G. Alan
    Maxson, C. J.
    Neuerburg, Kent M.
    JOURNAL OF ALGEBRA, 2013, 396 : 1 - 9
  • [37] BRANCHED CYCLIC COVERS OF SIMPLE KNOTS
    STRICKLAND, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (03) : 440 - 444
  • [38] Symmetry types of cyclic covers of the sphere
    Emilio Bujalance
    Francisco-Javier Cirre
    Peter Turbek
    Israel Journal of Mathematics, 2012, 191 : 61 - 83
  • [39] Some cyclic covers of complements of arrangements
    Cohen, DC
    Orlik, P
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) : 3 - 15
  • [40] Stacks of cyclic covers of projective spaces
    Arsie, A
    Vistoli, A
    COMPOSITIO MATHEMATICA, 2004, 140 (03) : 647 - 666