Combinatorial Algorithms for the Uniform-Cost Inverse 1-Center Problem on Weighted Trees

被引:0
|
作者
Kien Trung Nguyen
Huong Nguyen-Thu
Nguyen Thanh Hung
机构
[1] Can Tho University,Department of Mathematics, Teacher College
来源
关键词
Location problem; Inverse optimization problem; 1-Center problem; Tree; 90B10; 90B80; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Inverse 1-center problem on a network is to modify the edge lengths or vertex weights within certain bounds so that the prespecified vertex becomes an (absolute) 1-center of the perturbed network and the modifying cost is minimized. This paper focuses on the inverse 1-center problem on a weighted tree with uniform cost of edge length modification, a generalization for the analogous problem on an unweighted tree (Alizadeh and Burkard, Discrete Appl. Math. 159, 706–716, 2011). To solve this problem, we first deal with the weighted distance reduction problem on a weighted tree. Then, the weighted distances balancing problem on two rooted trees is introduced and efficiently solved. Combining these two problems, we derive a combinatorial algorithm with complexity of O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n^{2})$\end{document} to solve the inverse 1-center problem on a weighted tree if there exists no topology change during the edge length modification. Here, n is the number of vertices in the tree. Dropping this condition, the problem is solvable in O(n2c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n^{2}\mathbf {c})$\end{document} time, where c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {c}$\end{document} is the compressed depth of the tree. Finally, some special cases of the problem with improved complexity, say linear time, are also discussed.
引用
收藏
页码:813 / 831
页数:18
相关论文
共 50 条
  • [21] An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs
    Ding, Wei
    Qiu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1084 - 1095
  • [22] An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs
    Wei Ding
    Ke Qiu
    Journal of Combinatorial Optimization, 2017, 34 : 1084 - 1095
  • [23] On some inverse 1-center location problems
    Kien Trung Nguyen
    Nguyen Thanh Hung
    Huong Nguyen-Thu
    Tran Thu Le
    Van Huy Pham
    OPTIMIZATION, 2019, 68 (05) : 999 - 1015
  • [24] A linear time algorithm for the weighted lexicographic rectilinear 1-center problem in the plane
    Halman, N
    INFORMATION PROCESSING LETTERS, 2003, 86 (03) : 121 - 128
  • [25] Optimal Algorithms for Constrained 1-Center Problems
    Barba, Luis
    Bose, Prosenjit
    Langerman, Stefan
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 84 - 95
  • [26] AN O(N LOG N) RANDOMIZING ALGORITHM FOR THE WEIGHTED EUCLIDEAN 1-CENTER PROBLEM
    MEGIDDO, N
    ZEMEL, E
    JOURNAL OF ALGORITHMS, 1986, 7 (03) : 358 - 368
  • [27] Uniform-Cost Multi-Path Routing for Reconfigurable Data Center Networks
    Li, Jialong
    Gong, Haotian
    De Marchi, Federico
    Gong, Aoyu
    Lei, Yiming
    Bai, Wei
    Xia, Yiting
    PROCEEDINGS OF THE 2024 ACM SIGCOMM 2024 CONFERENCE, ACM SIGCOMM 2024, 2024, : 433 - 448
  • [28] On the Planar Piecewise Quadratic 1-Center Problem
    J. Puerto
    A. M. Rodríguez-Chía
    A. Tamir
    Algorithmica, 2010, 57 : 252 - 283
  • [29] THE 1-CENTER PROBLEM - EXPLOITING BLOCK STRUCTURE
    CHEN, ML
    FRANCIS, RL
    LOWE, TJ
    TRANSPORTATION SCIENCE, 1988, 22 (04) : 259 - 269
  • [30] On the Planar Piecewise Quadratic 1-Center Problem
    Puerto, J.
    Rodriguez-Chia, A. M.
    Tamir, A.
    ALGORITHMICA, 2010, 57 (02) : 252 - 283