Picard bundle on the moduli space of torsionfree sheaves

被引:0
|
作者
Usha N Bhosle
机构
[1] Tata Institute of Fundamental Research,
来源
关键词
Nodal curve; moduli spaces; Picard bundles; stability; 14H60;
D O I
暂无
中图分类号
学科分类号
摘要
Let Y be an integral nodal projective curve of arithmetic genus g≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\ge 2$$\end{document} with m nodes defined over an algebraically closed field. Let n and d be mutually coprime integers with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and d>n(2g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d > n(2g-2)$$\end{document}. Fix a line bundle L of degree d on Y. We prove that the Picard bundle EL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{E}_L$$\end{document} over the ‘fixed determinant moduli space’ UL(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_L(n,d)$$\end{document} is stable with respect to the polarisation θL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _L$$\end{document} and its restriction to the moduli space UL′(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U'_L(n,d)$$\end{document}, of vector bundles of rank n and determinant L, is stable with respect to any polarisation. There is an embedding of the compactified Jacobian J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} in the moduli space UY(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,d)$$\end{document} of rank n and degree d. We show that the restriction of the Picard bundle of rank ng (over UY(n,n(2g-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_Y(n,n(2g-1))$$\end{document}) to J¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{J}(Y)$$\end{document} is stable with respect to any theta divisor θJ¯(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{{\bar{J}}(Y)}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] MODULI SPACES OF RANK 2 INSTANTON SHEAVES ON THE PROJECTIVE SPACE
    Jardim, Marcos
    Maican, Mario
    Tikhomirov, Alexander S.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 399 - 424
  • [42] A MASTER SPACE FOR MODULI SPACES OF GIESEKER-STABLE SHEAVES
    D. GREB
    J. ROSS
    M. TOMA
    Transformation Groups, 2019, 24 : 379 - 401
  • [43] ON THE PICARD GROUP OF THE MODULI SPACE FOR K-3 SURFACES
    OGRADY, KG
    DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) : 117 - 124
  • [44] The nef cone of the moduli space of sheaves and strong Bogomolov inequalities
    Coskun, Izzet
    Huizenga, Jack
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 205 - 236
  • [45] Euler number of the moduli space of sheaves on a rational nodal curve
    Wu, BS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) : 1925 - 1936
  • [46] A MASTER SPACE FOR MODULI SPACES OF GIESEKER-STABLE SHEAVES
    Greb, D.
    Ross, J.
    Toma, M.
    TRANSFORMATION GROUPS, 2019, 24 (02) : 379 - 401
  • [47] On the Picard bundle
    Biswas, Indranil
    Ravindra, G. V.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (01): : 51 - 55
  • [48] PICARD GROUP OF MODULI VARIETIES OF SEMI-STABLE ALGEBRAIC SHEAVES ON P2(C)
    DREZET, JM
    ANNALES DE L INSTITUT FOURIER, 1988, 38 (03) : 105 - 168
  • [49] Moduli of twisted sheaves
    Lieblich, Max
    DUKE MATHEMATICAL JOURNAL, 2007, 138 (01) : 23 - 118
  • [50] Torsionfree sheaves over a nodal curve of arithmetic genus one
    Bhosle, Usha N.
    Biswas, Indranil
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01): : 81 - 98