An Example of Embedded Singular Continuous Spectrum for One-Dimensional Schrödinger Operators

被引:0
|
作者
Olga Tchebotareva
机构
[1] UNAM,Facultad de Ciencias
来源
关键词
Schrödinger equation; Singular continuous spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new example of a potential such that the corresponding Schrödinger operator in the halfaxis has singular continuous spectrum embedded in the absolutely continuous spectrum. The singular part is supported in an essentialy dense set. This generalizes a result of C. Remling [3].
引用
收藏
页码:225 / 231
页数:6
相关论文
共 50 条
  • [11] On the Negative Spectrum of One-Dimensional Schrödinger Operators with Point Interactions
    N. Goloschapova
    L. Oridoroga
    Integral Equations and Operator Theory, 2010, 67 : 1 - 14
  • [12] On the spectrum of a class of one-dimensional Schrödinger type operators with generalized potential
    G. A. Aigunov
    Mathematical Notes, 1997, 62 : 513 - 515
  • [13] Bounds on embedded singular spectrum for one-dimensional Schrodinger operators
    Remling, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 161 - 171
  • [14] One-Dimensional Schrödinger Operators with Complex Potentials
    Jan Dereziński
    Vladimir Georgescu
    Annales Henri Poincaré, 2020, 21 : 1947 - 2008
  • [15] Uniform Cantor Singular Continuous Spectrum for Nonprimitive Schrödinger Operators
    Marcus V. Lima
    César R. de Oliveira
    Journal of Statistical Physics, 2003, 112 : 357 - 374
  • [16] On the AC Spectrum of One-dimensional Random Schrödinger Operators with Matrix-valued Potentials
    Richard Froese
    David Hasler
    Wolfgang Spitzer
    Mathematical Physics, Analysis and Geometry, 2010, 13 : 219 - 233
  • [17] Lower Transport Bounds for One-dimensional Continuum Schrödinger Operators
    David Damanik
    Daniel Lenz
    Günter Stolz
    Mathematische Annalen, 2006, 336 : 361 - 389
  • [18] Strategies in localization proofs for one-dimensional random Schrödinger operators
    Günter Stolz
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 229 - 243
  • [19] ONE-DIMENSIONAL SCHR "ODINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS
    Mikhailets, Vladimir
    Molyboga, Volodymyr
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (02): : 184 - 200
  • [20] Reflection Probabilities of One-Dimensional Schrödinger Operators and Scattering Theory
    Benjamin Landon
    Annalisa Panati
    Jane Panangaden
    Justine Zwicker
    Annales Henri Poincaré, 2017, 18 : 2075 - 2085