Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients

被引:0
|
作者
Hoang Tran
Clayton G. Webster
Guannan Zhang
机构
[1] Oak Ridge National Laboratory,Department of Computational and Applied Mathematics
[2] The University of Tennessee,Department of Mathematics
来源
Numerische Mathematik | 2017年 / 137卷
关键词
41A10; 05A16; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a generalized methodology for analyzing the convergence of quasi-optimal Taylor and Legendre approximations, applicable to a wide class of parameterized elliptic PDEs with finite-dimensional deterministic and stochastic inputs. Such methods construct an optimal index set that corresponds to the sharp estimates of the polynomial coefficients. Our analysis, furthermore, represents a novel approach for estimating best M-term approximation errors by means of coefficient bounds, without the use of the standard Stechkin inequality. In particular, the framework we propose for analyzing asymptotic truncation errors is based on an extension of the underlying multi-index set into a continuous domain, and then an approximation of the cardinality (number of integer multi-indices) by its Lebesgue measure. Several types of isotropic and anisotropic (weighted) multi-index sets are explored, and rigorous proofs reveal sharp asymptotic error estimates in which we achieve sub-exponential convergence rates [of the form Mexp(-(κM)1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \text {exp}({-(\kappa M)^{1/N}})$$\end{document}, with κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} a constant depending on the shape and size of multi-index sets] with respect to the total number of degrees of freedom. Through several theoretical examples, we explicitly derive the constant κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} and use the resulting sharp bounds to illustrate the effectiveness of Legendre over Taylor approximations, as well as compare our rates of convergence with current published results. Computational evidence complements the theory and shows the advantage of our generalized framework compared to previously developed estimates
引用
收藏
页码:451 / 493
页数:42
相关论文
共 50 条
  • [31] A CONVERGENT ADAPTIVE STOCHASTIC GALERKIN FINITE ELEMENT METHOD WITH QUASI-OPTIMAL SPATIAL MESHES
    Eigel, Martin
    Gittelson, Claude Jeffrey
    Schwab, Christofh
    Zander, Elmar
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1367 - 1398
  • [32] A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN MIXED APPROXIMATIONS OF ELLIPTIC PDEs WITH RANDOM DATA
    Bespalov, Alexei
    Powell, Catherine E.
    Silvester, David
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 2039 - 2063
  • [33] Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
    F. Nobile
    L. Tamellini
    R. Tempone
    Numerische Mathematik, 2016, 134 : 343 - 388
  • [34] Selection of quasi-optimal inputs in chemometrics modeling by artificial neural network analysis
    Boger, Z
    ANALYTICA CHIMICA ACTA, 2003, 490 (1-2) : 31 - 40
  • [35] A UNIFIED ANALYSIS OF QUASI-OPTIMAL CONVERGENCE FOR ADAPTIVE MIXED FINITE ELEMENT METHODS
    Hu, Jun
    Yu, Guozhu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 296 - 316
  • [36] Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
    Nobile, F.
    Tamellini, L.
    Tempone, R.
    NUMERISCHE MATHEMATIK, 2016, 134 (02) : 343 - 388
  • [37] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [38] Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs (JUN, 10.1093/imanum/drad039, 2023)
    Brunner, Maximilian
    Innerberger, Michael
    Miraci, Ani
    Praetorius, Dirk
    Streitberger, Julian
    Heid, Pascal
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (03) : 1903 - 1909
  • [39] A QUASI-OPTIMAL SCHEDULING OF INTERMEDIATE SIGNATURES FOR MULTIPLE SIGNATURE ANALYSIS COMPACTION TESTING SCHEMES
    LAMBIDONIS, D
    AGARWAL, VK
    IVANOV, A
    XAVIER, D
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 1995, 6 (01): : 75 - 84
  • [40] ANALYSIS OF THE SENSITIVITY OF QUASI-OPTIMAL COMPLEX DEVICES OF PULSE AND CONTINUOUS SIGNAL RECEPTION AND PROCESSING
    ARTEMENKOV, VS
    RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1939 - 1946