Holomorphic normal form of nonlinear perturbations of nilpotent vector fields

被引:0
|
作者
Laurent Stolovitch
Freek Verstringe
机构
[1] Université de Nice — Sophia Antipolis,CNRS, Laboratoire J.
[2] Parc Valrose,A. Dieudonné U.M.R. 6621
[3] Royal Observatory of Belgium,undefined
来源
关键词
local analytic dynamics; fixed point; normal form; Belitskii normal form; small divisors; Newton method; analytic invariant manifold; complete integrability; 34M35; 34C20; 37J40; 37F50; 58C15; 34C45;
D O I
暂无
中图分类号
学科分类号
摘要
We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n ≥ 3. Based on Belitskii’s work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point.We shall show that this sufficient condition is a nilpotent version of Bruno’s condition (A). In dimension 2, no condition is required since, according to Stróżyna–Żołladek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton’s method and sl2(C)-representations.
引用
收藏
页码:410 / 436
页数:26
相关论文
共 50 条
  • [1] Holomorphic normal form of nonlinear perturbations of nilpotent vector fields
    Stolovitch, Laurent
    Verstringe, Freek
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (04): : 410 - 436
  • [2] Normal form of perturbations of quasihomogeneous vector fields
    Lombardi, Eric
    Stolovitch, Laurent
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (3-4) : 143 - 146
  • [3] A New Normal Form for Monodromic Nilpotent Singularities of Planar Vector Fields
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [4] A New Normal Form for Monodromic Nilpotent Singularities of Planar Vector Fields
    Antonio Algaba
    Cristóbal García
    Jaume Giné
    Mediterranean Journal of Mathematics, 2021, 18
  • [5] Unique Normal Form for a Class of Three-Dimensional Nilpotent Vector Fields
    Li, Jing
    Kou, Liying
    Wang, Duo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [6] NORMAL FORM OF HOLOMORPHIC VECTOR FIELDS WITH AN INVARIANT TORUS UNDER BRJUNO'S A CONDITION
    Chavaudret, Claire
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (05) : 1987 - 2020
  • [7] Nilpotent normal form for divergence-free vector fields and volume-preserving maps
    Dullin, H. R.
    Meiss, J. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 156 - 166
  • [8] Unique Normal Form and the Associated Coefficients for a Class of Three-Dimensional Nilpotent Vector Fields
    Li, Jing
    Kou, Liying
    Wang, Duo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (14):
  • [9] Unique normal forms for nilpotent planar vector fields
    Chen, GT
    Wang, D
    Wang, XF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2159 - 2174
  • [10] Normal form of commuting vector fields
    Stolovitch, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06): : 665 - 668