A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images

被引:0
|
作者
Abdelmalek Bouguettaya
Hafed Zarzour
Ahmed Kechida
Amine Mohammed Taberkit
机构
[1] Research Centre in Industrial Technologies (CRTI),LIM Research, Department of Mathematics and Computer Science
[2] Souk Ahras University,undefined
来源
Cluster Computing | 2023年 / 26卷
关键词
Computer vision; Deep learning; Unmanned Aerial Vehicles; Precision agriculture; Plant disease; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The agricultural crop productivity can be affected and reduced due to many factors such as weeds, pests, and diseases. Traditional methods that are based on terrestrial engines, devices, and farmers’ naked eyes are facing many limitations in terms of accuracy and the required time to cover large fields. Currently, precision agriculture that is based on the use of deep learning algorithms and Unmanned Aerial Vehicles (UAVs) provides an effective solution to achieve agriculture applications, including plant disease identification and treatment. In the last few years, plant disease monitoring using UAV platforms is one of the most important agriculture applications that have gained increasing interest by researchers. Accurate detection and treatment of plant diseases at early stages is crucial to improving agricultural production. To this end, in this review, we analyze the recent advances in the use of computer vision techniques that are based on deep learning algorithms and UAV technologies to identify and treat crop diseases.
引用
收藏
页码:1297 / 1317
页数:20
相关论文
共 50 条
  • [41] Machine Learning Techniques for the Assessment of Citrus Plant Health Using UAV-based Digital Images
    Do, Dat
    Pham, Frank
    Raheja, Amar
    Bhandari, Subodh
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING III, 2018, 10664
  • [42] Above-ground Biomass Wheat Estimation: Deep Learning with UAV-based RGB Images
    Schreiber, Lincoln Vinicius
    Atkinson Amorim, Joao Gustavo
    Guimaraes, Leticia
    Matos, Debora Motta
    da Costa, Celso Maciel
    Parraga, Adriane
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [43] An improved deep learning approach for detection of maize tassels using UAV-based RGB images
    Chen, Jiahao
    Fu, Yongshuo
    Guo, Yahui
    Xu, Yue
    Zhang, Xuan
    Hao, Fanghua
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [44] A novel deep learning method to identify single tree species in UAV-based hyperspectral images
    Miyoshi G.T.
    Arruda M.D.S.
    Osco L.P.
    Junior J.M.
    Gonçalves D.N.
    Imai N.N.
    Tommaselli A.M.G.
    Honkavaara E.
    Gonçalves W.N.
    Miyoshi, Gabriela Takahashi (gabriela.t.miyoshi@unesp.br), 1600, MDPI AG (12):
  • [45] Deep learning-based 3D reconstruction from multiple images: A survey
    Wang, Chuhua
    Reza, Md Alimoor
    Vats, Vibhas
    Ju, Yingnan
    Thakurdesai, Nikhil
    Wang, Yuchen
    Crandall, David J.
    Jung, Soon-heung
    Seo, Jeongil
    NEUROCOMPUTING, 2024, 597
  • [46] A Survey on Machine-Learning Techniques for UAV-Based Communications
    Bithas, Petros S.
    Michailidis, Emmanouel T.
    Nomikos, Nikolaos
    Vouyioukas, Demosthenes
    Kanatas, Athanasios G.
    SENSORS, 2019, 19 (23)
  • [47] Deep Reinforcement Learning for UAV-Based SDWSN Data Collection
    Karegar, Pejman A.
    Al-Hamid, Duaa Zuhair
    Chong, Peter Han Joo
    FUTURE INTERNET, 2024, 16 (11)
  • [48] UAV-Based Situational Awareness System Using Deep Learning
    Geraldes, Ruben
    Goncalves, Artur
    Lai, Tin
    Villerabel, Mathias
    Deng, Wenlong
    Salta, Ana
    Nakayama, Kotaro
    Matsuo, Yutaka
    Prendinger, Helmut
    IEEE ACCESS, 2019, 7 : 122583 - 122594
  • [49] Deep learning-based encryption for secure transmission digital images: A survey
    Rohhila, Soniya
    Singh, Amit Kumar
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [50] Performance of a deep learning-based identification system for esophageal cancer from CT images
    Masashi Takeuchi
    Takumi Seto
    Masahiro Hashimoto
    Nao Ichihara
    Yosuke Morimoto
    Hirofumi Kawakubo
    Tatsuya Suzuki
    Masahiro Jinzaki
    Yuko Kitagawa
    Hiroaki Miyata
    Yasubumi Sakakibara
    Esophagus, 2021, 18 : 612 - 620