An Efficient Algorithm for Generating Univariate Cubic L1 Splines

被引:0
|
作者
Hao Cheng
Shu-Cherng Fang
John E. Lavery
机构
[1] North Carolina State University,Industrial Engineering and Operations Research
[2] Army Research Laboratory,Mathematics Division, Army Research Office
来源
Computational Optimization and Applications | 2004年 / 29卷
关键词
active set method; convex programming; cubic ; spline; geometric programming;
D O I
暂无
中图分类号
学科分类号
摘要
An active set based algorithm for calculating the coefficients of univariate cubic L1 splines is developed. It decomposes the original problem in a geometric-programming setting into independent optimization problems of smaller sizes. This algorithm requires only simple algebraic operations to obtain an exact optimal solution in a finite number of iterations. In stability and computational efficiency, the algorithm outperforms a currently widely used discretization-based primal affine algorithm.
引用
收藏
页码:219 / 253
页数:34
相关论文
共 50 条
  • [21] Shape-preserving, multiscale interpolation by bi- and multivariate cubic L1 splines
    Lavery, JE
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (04) : 321 - 343
  • [22] Convexity-preserving approximation by univariate cubic splines
    Han, Xuli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 196 - 206
  • [23] L1 Control Theoretic Smoothing Splines
    Nagahara, Masaaki
    Martin, Clyde F.
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (11) : 1394 - 1397
  • [24] Univariate Cubic L-1 Interpolating Splines: Analytical Results for Linearity, Convexity and Oscillation on 5-Point Windows
    Jin, Qingwei
    Lavery, John E.
    Fang, Shu-Cherng
    ALGORITHMS, 2010, 3 (03): : 276 - 293
  • [25] Shape-preserving quasi-interpolating univariate cubic splines
    Conti, C
    Morandi, R
    Rabut, C
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 55 - 62
  • [26] P-splines with an l1 penalty for repeated measures
    Segal, Brian D.
    Elliott, Michael R.
    Braun, Thomas
    Jiang, Hui
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3554 - 3600
  • [27] EFFICIENT ALGORITHM FOR DISCRETE L1 LINEAR-APPROXIMATION WITH LINEAR CONSTRAINTS
    BARRODALE, I
    ROBERTS, FDK
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) : 603 - 611
  • [28] Shape-preserving interpolation of irregular data by bivariate curvature-based cubic L1 splines in spherical coordinates
    Lavery, JE
    COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (09) : 818 - 837
  • [29] On the cubic L1 spline interpolant to the Heaviside function
    Auquiert, P.
    Gibaru, O.
    Nyiri, E.
    NUMERICAL ALGORITHMS, 2007, 46 (04) : 321 - 332
  • [30] On the cubic L1 spline interpolant to the Heaviside function
    P. Auquiert
    O. Gibaru
    E. Nyiri
    Numerical Algorithms, 2007, 46 : 321 - 332