The moduli space of the modular group in complex hyperbolic geometry

被引:0
|
作者
Elisha Falbel
John R. Parker
机构
[1] Institut de Mathématiques,
[2] Université Pierre et Marie Curie,undefined
[3] 4,undefined
[4] place Jussieu,undefined
[5] F-75252 Paris,undefined
[6] France (e-mail: falbel@math.jussieu.fr),undefined
[7] Department of Mathematical Sciences,undefined
[8] University of Durham,undefined
[9] South Road,undefined
[10] Durham DH1 3LE,undefined
[11] England (e-mail: J.R.Parker@durham.ac.uk),undefined
来源
Inventiones mathematicae | 2003年 / 152卷
关键词
Modulus Space; Isometry Group; Modular Group; Fuchsian Group; Hyperbolic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the space of discrete, faithful, type-preserving representations of the modular group into the isometry group of complex hyperbolic 2-space up to conjugacy. This is the first Fuchsian group for which the entire complex hyperbolic deformation space has been constructed. We also show how the ℂ-spheres of Falbel-Zocca are related to the ℝ-spheres (hybrid spheres) of Schwartz.
引用
收藏
页码:57 / 88
页数:31
相关论文
共 50 条
  • [41] Integers, Modular Groups, and Hyperbolic Space
    Johnson, Norman W.
    DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 225 - 234
  • [42] A complex hyperbolic structure for moduli of cubic surfaces
    Allcock, D
    Carlson, JA
    Toledo, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 49 - 54
  • [43] The modular group and a hyperbolic beta integral
    Sarkissian, G. A.
    Spiridonov, V. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (03) : 575 - 577
  • [44] On the geometry of a Picard modular group
    Deraux, Martin
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (04) : 1393 - 1416
  • [45] The uniformizing differential equation of the complex hyperbolic structure on the moduli space of a marked cubic surface: II
    Sasaki, T
    Yoshida, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2319 - 2328
  • [46] Moduli space of complex structures
    Giorgadze G.
    Journal of Mathematical Sciences, 2009, 160 (6) : 697 - 716
  • [47] Integral geometry of equidistants in hyperbolic space
    Solanes, G
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 145 (1) : 271 - 284
  • [48] Revisiting the geometry of horospheres of the hyperbolic space
    Gervasio Colares, A.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 771 - 784
  • [49] Integral geometry of equidistants in hyperbolic space
    Gil Solanes
    Israel Journal of Mathematics, 2005, 145 : 271 - 284
  • [50] The moduli space of isometry classes of globally hyperbolic spacetimes
    Bombelli, L
    Noldus, J
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (18) : 4429 - 4453