Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network

被引:0
|
作者
Mingxuan Liang
Pei Cao
J. Tang
机构
[1] China Jiliang University,College of Mechanical and Electrical Engineering
[2] University of Connecticut,Department of Mechanical Engineering
关键词
Fault identification; Parallel convolutional network; Wavelet; Reduced dataset; Rolling bearing;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning has seen increased application in the data-driven fault diagnosis of manufacturing system components such as rolling bearing. However, deep learning methods often require a large amount of training data. This is a major barrier in particular for bearing datasets whose sizes are generally limited due to the high costs of data acquisition especially for fault scenarios. When small datasets are employed, over-fitting may occur for a deep learning network with many parameters. To tackle this challenge, in this research, we propose a new methodology of parallel convolutional neural network (P-CNN) for bearing fault identification that is capable of feature fusion. Raw vibration signals in the time domain are divided into non-overlapping training data slices, and two different convolutional neural network (CNN) branches are built in parallel to extract features in the time domain and in the time-frequency domain, respectively. Subsequently, in the merged layer, the time-frequency features extracted by continuous wavelet transform (CWT) are fused together with the time-domain features as inputs to the final classifier, thereby enriching feature information and improving network performance. By incorporating empirical feature extraction such as CWT, this proposed method can effectively enable deep learning even with dataset size limitation in practical bearing diagnosis. The algorithm is validated through case studies on publicly accessible experimental rolling bearing datasets. A wide range of dataset sizes is tested with cross-validation, and influencing factors on network performance are discussed. Compared with existing methods, the proposed approach not only possesses higher accuracy but also exhibits better stability and robustness as training dataset sizes and load conditions vary. The concept of feature fusion through P-CNN can be extended to other fault diagnosis applications in manufacturing systems.
引用
收藏
页码:819 / 831
页数:12
相关论文
共 50 条
  • [21] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [22] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [23] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [24] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [25] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [26] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [27] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [28] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [29] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [30] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737