Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere

被引:0
|
作者
Qing-Ming Cheng
Takamichi Ichikawa
Shinji Mametsuka
机构
[1] Saga University,Department of Mathematics, Faculty of Science and Engineering
关键词
35P15; 58G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study eigenvalues of the poly-Laplacian with any order on a domain in an n-dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal result of Cheng and Yang (Math Ann 331:445–460, 2005) is included in our ones. In order to prove our results, we introduce 2(l + 1) functions ai and bi, for i = 0, 1, . . . , l and two operators μ and η. First of all, we study properties of functions ai and bi and the operators μ and η. By making use of these properties and introducing k free constants, we obtain estimates for eigenvalues.
引用
收藏
相关论文
共 50 条
  • [41] Laplacian eigenvalues of the unit graph of the ring Zn
    Shen, Shouqiang
    Liu, Weijun
    Jin, Wei
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 459
  • [42] ESTIMATES THE UPPER BOUNDS OF DIRICHLET EIGENVALUES FOR FRACTIONAL LAPLACIAN
    Chen, Hua
    Chen, Hong-ge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01) : 301 - 317
  • [43] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Feng Du
    Chuanxi Wu
    Guanghan Li
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 703 - 726
  • [44] ESTIMATES FOR THE HIGHER EIGENVALUES OF THE DRIFTING LAPLACIAN ON HADAMARD MANIFOLDS
    Xiong, Xin
    Zeng, Lingzhong
    Zhu, Huihui
    KODAI MATHEMATICAL JOURNAL, 2022, 45 (01) : 143 - 156
  • [45] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 703 - 726
  • [46] ESTIMATES FOR THE SUMS OF EIGENVALUES OF THE FRACTIONAL LAPLACIAN ON A BOUNDED DOMAIN
    Yolcu, Selma Yildirim
    Yolcu, Turkay
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (03)
  • [47] On higher order eigenvalues of the spherical Laplacian operator
    Shieh, CT
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (03): : 521 - 530
  • [48] On the second Laplacian eigenvalues of trees of odd order
    Shao, Jian-yu
    Zhang, Li
    Yuan, Xi-ying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 475 - 485
  • [49] Existence of nontrivial solutions for a class of poly-Laplacian system with mixed nonlinearity on graphs
    Yu, Xiaoli
    Zhang, Xingyong
    Xie, Junping
    Zhang, Xuechen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1750 - 1763
  • [50] INVERSION IN THE UNIT-SPHERE FOR POWERS OF THE LAPLACIAN
    AHLBRANDT, CD
    HINTON, DB
    LEWIS, RT
    LECTURE NOTES IN MATHEMATICS, 1983, 1032 : 1 - 8