Comparison and Wu’s theorems in Finsler geometry

被引:0
|
作者
Jinling Li
Chunhui Qiu
机构
[1] Jimei University,School of Sciences
[2] Xiamen University,School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2020年 / 295卷
关键词
Weakly Kähler Finsler manifold; Strictly convex function; Flag curvature; Stein manifold; 53C56; 32Q99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give several comparison theorems and their applications in Finsler geometry. Moreover, by means of the Hessian comparison theorems of a real Finsler manifold, Cartan connection, radial flag curvature and tangent curvature, we give Wu’s theorem on a strongly convex weakly Kähler Finsler manifold with a pole. Finally, by using the complex Rund connection and definition of radial flag curvature on a strongly pseudoconvex complex Finsler manifold, we further discuss Wu’s theorem on a strongly convex Kähler Finsler manifold.
引用
收藏
页码:485 / 514
页数:29
相关论文
共 50 条
  • [31] Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below
    Songting Yin
    Frontiers of Mathematics in China, 2018, 13 : 435 - 448
  • [32] Volume comparison and its applications in Riemann-Finsler geometry
    Shen, ZM
    ADVANCES IN MATHEMATICS, 1997, 128 (02) : 306 - 328
  • [33] S-closed conformal transformations in Finsler geometry
    Shen, Bin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 254 - 263
  • [34] Intersection theorems for Finsler manifolds
    Kozma, L
    Peter, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (1-2): : 193 - 201
  • [35] Multimetric Finsler geometry
    Carvalho, Patricia
    Landri, Cristian
    Mistry, Ravi
    Pinzul, Aleksandr
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (03):
  • [36] On Finsler geometry of submanifolds
    Zhongmin Shen
    Mathematische Annalen, 1998, 311 : 549 - 576
  • [37] A SOLUTION IN THE FINSLER GEOMETRY
    MATONO, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (03): : 343 - 349
  • [38] ON A CONNECTION IN FINSLER GEOMETRY
    SHEN, ZM
    HOUSTON JOURNAL OF MATHEMATICS, 1994, 20 (04): : 591 - 621
  • [39] Finsler geometry inspired
    Kozma, L
    Tamássy, L
    FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 9 - 14
  • [40] CURVATURE IN FINSLER GEOMETRY
    AUSLANDER, L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 554 - 555