Self-supervised deep subspace clustering with entropy-norm

被引:0
|
作者
Guangyi Zhao
Simin Kou
Xuesong Yin
Guodao Zhang
Yigang Wang
机构
[1] Hangzhou Dianzi University,Department of Digital Media Technology
来源
Cluster Computing | 2024年 / 27卷
关键词
Deep subspace clustering; Self-supervise; Contrastive learning; Entropy-norm;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-Encoder based Deep Subspace Clustering (DSC) has been widely applied in computer vision, motion segmentation and image processing. However, existing DSC methods suffer from two limitations: (1) they ignore the rich useful relational information and the connectivity within each subspace due to the reconstruction loss; (2) they design convolutional networks individually according to specific datasets. To address the above problems and improve the performance of DSC, we propose a novel algorithm called Self-Supervised deep Subspace Clustering with Entropy-norm(S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE) in this paper. Firstly, S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE introduces self-supervised contrastive learning to pre-train the encoder instead of requiring a decoder. Besides, the trained encoder is used as a feature extractor to segment subspace by combining self-expression layer and entropy-norm constraint. This not only preserves the local structure of data, but also improves the connectivity between data points. Extensive experimental results demonstrate the superior performance of S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE in comparison to the state-of-the-art approaches.
引用
收藏
页码:1611 / 1623
页数:12
相关论文
共 50 条
  • [31] Pseudo-Supervised Deep Subspace Clustering
    Lv, Juncheng
    Kang, Zhao
    Lu, Xiao
    Xu, Zenglin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5252 - 5263
  • [32] Self-Supervised Discriminative Feature Learning for Deep Multi-View Clustering
    Xu, Jie
    Ren, Yazhou
    Tang, Huayi
    Yang, Zhimeng
    Pan, Lili
    Yang, Yang
    Pu, Xiaorong
    Yu, Philip S.
    He, Lifang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 7470 - 7482
  • [33] Maximizing bi-mutual information of features for self-supervised deep clustering
    Jiacheng Zhao
    Junfen Chen
    Xiangjie Meng
    Junhai Zhai
    Advances in Computational Intelligence, 2022, 2 (1):
  • [34] SensorSCAN: Self-supervised learning and deep clustering for fault diagnosis in chemical processes
    Golyadkin, Maksim
    Pozdnyakov, Vitaliy
    Zhukov, Leonid
    Makarov, Ilya
    ARTIFICIAL INTELLIGENCE, 2023, 324
  • [35] Generic network for domain adaptation based on self-supervised learning and deep clustering
    Baffour, Adu Asare
    Qin, Zhen
    Geng, Ji
    Ding, Yi
    Deng, Fuhu
    Qin, Zhiguang
    NEUROCOMPUTING, 2022, 476 : 126 - 136
  • [36] Short Text Clustering with a Deep Multi-embedded Self-supervised Model
    Zhang, Kai
    Lian, Zheng
    Li, Jiangmeng
    Li, Haichang
    Hu, Xiaohui
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 150 - 161
  • [37] Self-Supervised Clustering for Leaf Disease Identification
    Monowar, Muhammad Mostafa
    Hamid, Md. Abdul
    Kateb, Faris A.
    Ohi, Abu Quwsar
    Mridha, M. F.
    AGRICULTURE-BASEL, 2022, 12 (06):
  • [38] Differentiable self-supervised clustering with intrinsic interpretability
    Yan, Xiaoqiang
    Jin, Zhixiang
    Mao, Yiqiao
    Ye, Yangdong
    Yu, Hui
    NEURAL NETWORKS, 2024, 179
  • [39] Self-Supervised Deep Depth Denoising
    Sterzentsenko, Vladimiros
    Saroglou, Leonidas
    Chatzitofis, Anargyros
    Thermos, Spyridon
    Zioulis, Nikolaos
    Doumanoglou, Alexandros
    Zarpalas, Dimitrios
    Daras, Petros
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1242 - 1251
  • [40] Self-Supervised Deep Correlation Tracking
    Yuan, Di
    Chang, Xiaojun
    Huang, Po-Yao
    Liu, Qiao
    He, Zhenyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 976 - 985