Self-supervised deep subspace clustering with entropy-norm

被引:0
|
作者
Guangyi Zhao
Simin Kou
Xuesong Yin
Guodao Zhang
Yigang Wang
机构
[1] Hangzhou Dianzi University,Department of Digital Media Technology
来源
Cluster Computing | 2024年 / 27卷
关键词
Deep subspace clustering; Self-supervise; Contrastive learning; Entropy-norm;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-Encoder based Deep Subspace Clustering (DSC) has been widely applied in computer vision, motion segmentation and image processing. However, existing DSC methods suffer from two limitations: (1) they ignore the rich useful relational information and the connectivity within each subspace due to the reconstruction loss; (2) they design convolutional networks individually according to specific datasets. To address the above problems and improve the performance of DSC, we propose a novel algorithm called Self-Supervised deep Subspace Clustering with Entropy-norm(S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE) in this paper. Firstly, S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE introduces self-supervised contrastive learning to pre-train the encoder instead of requiring a decoder. Besides, the trained encoder is used as a feature extractor to segment subspace by combining self-expression layer and entropy-norm constraint. This not only preserves the local structure of data, but also improves the connectivity between data points. Extensive experimental results demonstrate the superior performance of S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE in comparison to the state-of-the-art approaches.
引用
收藏
页码:1611 / 1623
页数:12
相关论文
共 50 条
  • [1] Self-supervised deep subspace clustering with entropy-norm
    Zhao, Guangyi
    Kou, Simin
    Yin, Xuesong
    Zhang, Guodao
    Wang, Yigang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (02): : 1611 - 1623
  • [2] Sparse Subspace Clustering with Entropy-Norm
    Bai, Liang
    Liang, Jiye
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [3] Self-supervised deep geometric subspace clustering network
    Baek, Sangwon
    Yoon, Gangjoon
    Song, Jinjoo
    Yoon, Sang Min
    INFORMATION SCIENCES, 2022, 610 : 235 - 245
  • [4] Self-supervised deep subspace clustering network for faces in videos
    Yunhao Qiu
    Pengyi Hao
    The Visual Computer, 2021, 37 : 2253 - 2261
  • [5] Self-Supervised Deep Multi-View Subspace Clustering
    Sun, Xiukun
    Cheng, Miaomiao
    Min, Chen
    Jing, Liping
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1001 - 1016
  • [6] Self-supervised deep subspace clustering network for faces in videos
    Qiu, Yunhao
    Hao, Pengyi
    VISUAL COMPUTER, 2021, 37 (08): : 2253 - 2261
  • [7] Self-Supervised Embedding for Subspace Clustering
    Zhu, Wenjie
    Peng, Bo
    Chen, Chunchun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3687 - 3691
  • [8] Triplet Deep Subspace Clustering via Self-Supervised Data Augmentation
    Zhang, Zhao
    Li, Xianzhen
    Zhang, Haijun
    Yang, Yi
    Yan, Shuicheng
    Wang, Meng
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 946 - 955
  • [9] Self-Supervised Convolutional Subspace Clustering Network
    Zhang, Junjian
    Li, Chun-Guang
    You, Chong
    Qi, Xianbiao
    Zhang, Honggang
    Guo, Jun
    Lin, Zhouchen
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5468 - 5477
  • [10] Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering
    Wang, Shiye
    Li, Changsheng
    Li, Yanming
    Yuan, Ye
    Wang, Guoren
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 (1555-1567) : 1555 - 1567