Solar Filament Recognition Based on Deep Learning

被引:0
|
作者
Gaofei Zhu
Ganghua Lin
Dongguang Wang
Suo Liu
Xiao Yang
机构
[1] Chinese Academy of Sciences,National Astronomical Observatories
[2] University of Chinese Academy of Sciences,Key Laboratory of Solar Activity
[3] National Astronomical Observatories,School of Astronomy and Space Sciences
[4] University of Chinese Academy of Sciences,undefined
来源
Solar Physics | 2019年 / 294卷
关键词
Filaments; Prominences; Image processing; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a reliable method using deep learning to recognize solar filaments in Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} full-disk solar images automatically. This method cannot only identify filaments accurately but also minimize the effects of noise points of the solar images. Firstly, a raw filament dataset is set up, consisting of tens of thousands of images required for deep learning. Secondly, an automated method for solar filament identification is developed using the U-Net deep convolutional network. To test the performance of the method, a dataset with 60 pairs of manually corrected Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images is employed. These images are obtained from the Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013. Cross-validation indicates that the method can efficiently identify filaments in full-disk Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images.
引用
收藏
相关论文
共 50 条
  • [21] Building Recognition System Based on Deep Learning
    Bezak, Pavol
    2016 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR), 2016,
  • [22] Occluded Face Recognition Based on the Deep Learning
    Wu, Gui
    Tao, Jun
    Xu, Xun
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 793 - 797
  • [23] Pedestrian Attribute Recognition Based on Deep Learning
    Yuan Peipei
    Zhang Liang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (06)
  • [24] Recognition of objects based on deep learning in an RPAS
    Alvarez-Sanchez, Teodoro
    Alvarez-Cedillo, Jesus A.
    Herrera-Charles, Roberto
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [25] Image Recognition Method Based on Deep Learning
    Jia, Xin
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4730 - 4735
  • [26] Target Recognition and Location Based on Deep Learning
    Zhang, Jun
    Zhou, Zhangli
    Xing, Luyao
    Sheng, Xueliang
    Wang, Meiling
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 247 - 250
  • [27] Texture Recognition and Classification Based on Deep Learning
    Zhu, Gaoming
    Li, Bingchan
    Hong, Shuai
    Mao, Bo
    2018 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2018, : 344 - 348
  • [28] Deep Learning based Gesture Recognition for Drones
    Lee, Min-Fan Ricky
    Chung, Ching-Yao
    Espinola, Adalberto Sergio Montania
    Vera, Marcelo Javier Gomez
    Caballero, Guillermo Federico Pallares
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [29] Pavement Type Recognition Based on Deep Learning
    Cui, Gaojian
    Ning, Fanghu
    Ren, Xiaoguang
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2020), 2020, : 33 - 37
  • [30] Healthcare entity recognition based on deep learning
    Qinlu He
    Pengze Gao
    Fan Zhang
    Genqing Bian
    Zhen Li
    Zan Wang
    Multimedia Tools and Applications, 2024, 83 : 32739 - 32763